Saqib, S., Akram, A., Halim, S. A. & Tassaduq, R. Sources of β-galactosidase and its applications in food industry. 3 Biotech. 7, 79 (2017).
Google Scholar
Movahedpour, A. et al. β-Galactosidase: From its source and applications to its recombinant form. Biotechnol. Appl. Biochem. https://doi.org/10.1002/bab.2137 (2021).
Google Scholar
Husain, Q. Beta galactosidases and their potential applications: A review. Crit. Rev. Biotechnol. 30, 41–62 (2010).
Google Scholar
Benešová, E., Šućur, Z., Těšínský, M., Spiwok, V. & Lipovová, P. Transglycosylation abilities of β-d-galactosidases from GH family 2. 3 Biotech. 11, 168 (2021).
Google Scholar
Cheng, W. et al. Effects of a galacto-oligosaccharide-rich diet on fecal microbiota and metabolite profiles in mice. Food Funct. 9, 1612–1620 (2018).
Google Scholar
Chandrasekar, B. & van der Hoorn, R. A. Beta galactosidases in Arabidopsis and tomato—a mini review. Biochem. Soc. Trans. 44, 150–158 (2016).
Google Scholar
Lu, L., Guo, L., Wang, K., Liu, Y. & Xiao, M. β-Galactosidases: A great tool for synthesizing galactose-containing carbohydrates. Biotechnol. Adv. 39, 107465 (2020).
Google Scholar
Bartesaghi, A., Matthies, D., Banerjee, S., Merk, A. & Subramaniam, S. Structure of β-galactosidase at 3.2-Å resolution obtained by cryo-electron microscopy. Proc. Natl. Acad. Sci. USA 111, 11709–11714 (2014).
Google Scholar
Juers, D. H., Matthews, B. W. & Huber, R. E. LacZ β-galactosidase: Structure and function of an enzyme of historical and molecular biological importance. Protein Sci. 21, 1792–1807 (2012).
Google Scholar
Mangiagalli, M. & Lotti, M. Cold-active β-galactosidases: Insight into cold adaption mechanisms and biotechnological exploitation. Mar. Drugs 19, 43 (2021).
Google Scholar
Higuchi, Y. et al. Identification and characterization of a novel β-D-galactosidase that releases pyruvylated galactose. Sci. Rep. 8, 12013 (2018).
Google Scholar
Carneiro, L. A. B. C., Yu, L., Dupree, P. & Ward, R. J. Characterization of a β-galactosidase from Bacillus subtilis with transgalactosylation activity. Int. J. Biol. Macromol. 120, 279–287 (2018).
Google Scholar
Zanette, C. M., Mariano, A. B., Yukawa, Y. S., Mendes, I. & Spier, M. R. Microalgae mixotrophic cultivation for β-galactosidase production. J. Appl. Phycol. 31, 1597–1606 (2019).
Google Scholar
Bentahar, J., Doyen, A., Beaulieu, L. & Deschênes, J. S. Investigation of β-galactosidase production by microalga Tetradesmus obliquus in determined growth conditions. J. Appl. Phycol. 31, 301–308 (2019).
Google Scholar
Brasil, B. S. A. F., Siqueira, F. G., Salum, T. F. C., Zanette, Z. M. & Spier, M. R. Microalgae and cyanobacteria as enzyme biofactories. Alg. Res. 25, 76–89 (2017).
Google Scholar
Gao, K. Chinese studies on the edible blue-green alga, Nostoc flagelliforme: A review. J. App. Phycol. 10, 37–49 (1998).
Google Scholar
Morsy, F. M., Kuzuha, S., Takani, Y. & Sakamoto, T. Novel thermostable glycosidases in the extracellular matrix of the terrestrial cyanobacterium Nostoc commune. J. Gen. Appl. Microbiol. 54, 243–252 (2008).
Google Scholar
Liu, W., Cui, L., Xu, H., Zhu, Z. & Gao, X. Flexibility-rigidity coordination of the dense exopolysaccharide matrix in terrestrial cyanobacteria acclimated to periodic desiccation. Appl. Environ. Microbiol. 83, e01619–17 (2017).
Google Scholar
Wright, D. J. et al. UV irradiation and desiccation modulate the three-dimensional extracellular matrix of Nostoc commune (Cyanobacteria). J. Biol. Chem. 280, 40271–40281 (2005).
Google Scholar
Gao, X., Xu, H. & Yuan, X. The overlooked genetic diversity in the dryland soil surface-dwelling cyanobacterium Nostoc flagelliforme as revealed by the marker gene wspA. Microb. Ecol. 81, 828–831 (2021).
Google Scholar
Shang, J. L. et al. Genomic and transcriptomic insights into the survival of the subaerial cyanobacterium Nostoc flagelliforme in arid and exposed habitats. Environ. Microbiol. 21, 845–863 (2019).
Google Scholar
Ai, Y., Yang, Y., Qiu, B. & Gao, X. Unique WSPA protein from terrestrial macroscopic cyanobacteria can confer resistance to osmotic stress in transgenic plants. World J. Microbiol. Biotechnol. 30, 2361–2369 (2014).
Google Scholar
Jones, G. L. ELECTROPHORESIS | One-Dimensional Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis. In Encyclopedia of Separation Science Vol. 137 (ed. Wilson, I. D.) 1309–1315 (Academic Press, 2000).
Google Scholar
Yang, Y. W. et al. Orange and red carotenoid proteins are involved in the adaptation of the terrestrial cyanobacterium Nostoc flagelliforme to desiccation. Photosynth. Res. 140, 103–113 (2019).
Google Scholar
Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976).
Google Scholar
Irvine, G. B. Determination of molecular size by size-exclusion chromatography (gel filtration). Curr. Protoc. Cell Biol. 5, 5 (2001).
Google Scholar
Raadsveld, C. W. & Klomp, H. Thin-layer chromatographic analysis of sugar mixtures. J. Chromatogr. A 57, 99–106 (1971).
Google Scholar
Georgakis, N. et al. Determination of half-maximal inhibitory concentration of an enzyme inhibitor. Methods Mol. Biol. 2089, 41–46 (2020).
Google Scholar
Dai, G., Deblois, C. P., Liu, S., Juneau, P. & Qiu, B. Differential sensitivity of five cyanobacterial strains to ammonium toxicity and its inhibitory mechanism on the photosynthesis of rice-field cyanobacterium Ge-Xian-Mi (Nostoc). Aquat. Toxicol. 89, 113–121 (2008).
Google Scholar
Zhang, L. C., Chen, Y. F., Chen, W. L. & Zhang, C. C. Existence of periplasmic barriers preventing green fluorescent protein diffusion from cell to cell in the cyanobacterium Anabaena sp. strain PCC 7120. Mol. Microbiol. 70, 814–823 (2008).
Google Scholar
Gao, X., Xu, H., Zhu, Z., She, Y. & Ye, S. Improved production of echinenone and canthaxanthin in transgenic Nostoc sp. PCC 7120 overexpressing a heterologous crtO gene from Nostoc flagelliforme. Microbiol. Res. 236, 126455 (2020).
Google Scholar
Wolk, C. P., Vonshak, A., Kehoe, P. & Elhai, J. Construction of shuttle vectors capable of conjugative transfer from Escherichia coli to nitrogen-fixing filamentous cyanobacteria. Proc. Natl. Acad. Sci. USA 81, 1561–1565 (1984).
Google Scholar
Zhao, X. M., Bi, Y. H., Chen, L., Hu, S. & Hu, Z. Y. Responses of photosynthetic activity in the drought-tolerant cyanobacterium, Nostoc flagelliforme to rehydration at different temperature. J. Arid Environ. 72, 370–377 (2008).
Google Scholar
Katoh, K., Misawa, K., Kuma, K. & Miyata, T. MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30, 3059–3066 (2002).
Google Scholar
Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).
Google Scholar
Minh, B. Q. et al. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530–1534 (2020).
Google Scholar
Madadlou, A., O’Sullivan, S. & Sheehan, D. Fast protein liquid chromatography. Methods Mol. Biol. 681, 439–447 (2011).
Google Scholar
McGuffin, L. J., Bryson, K. & Jones, D. T. The PSIPRED protein structure prediction server. Bioinformatics 16, 404–405 (2000).
Google Scholar
Huber, R. E., Parfett, C., Woulfe-Flanagan, H. & Thompson, D. J. Interaction of divalent cations with beta-galactosidase (Escherichia coli). Biochemistry 18, 4090–4095 (1979).
Google Scholar
Roth, N. J. & Huber, R. E. The beta-galactosidase (Escherichia coli) reaction is partly facilitated by interactions of His-540 with the C6 hydroxyl of galactose. J. Biol. Chem. 271, 14296–14301 (1996).
Google Scholar
Xu, J., McRae, M. A., Harron, S., Rob, B. & Huber, R. E. A study of the relationships of interactions between Asp-201, Na+ or K+, and galactosyl C6 hydroxyl and their effects on binding and reactivity of beta-galactosidase. Biochem. Cell Biol. 82, 275–284 (2004).
Google Scholar
Gräslund, S. et al. Protein production and purification. Nat. Methods 5, 135–146 (2008).
Google Scholar
Pawlak-Szukalska, A., Wanarska, M., Popinigis, A. T. & Kur, J. A novel cold-active β-d-galactosidase with transglycosylation activity from the Antarctic Arthrobacter sp. 32cB–Gene cloning, purification and characterization. Proc. Biochem. 49, 2122–2133 (2014).
Google Scholar
Wierzbicka-Woś, A. et al. A novel cold-active β-D-galactosidase from the Paracoccus sp. 32d–Gene cloning, purification and characterization. Microb. Cell Fact. 10, 108 (2011).
Google Scholar
Arima, H. et al. Molecular genetic and chemotaxonomic characterization of the terrestrial cyanobacterium Nostoc commune and its neighboring species. FEMS Microbiol. Ecol. 79, 34–45 (2012).
Google Scholar
Gao, X., Liu, L. T. & Liu, B. Dryland cyanobacterial exopolysaccharides show protection against acid deposition damage. Environ. Sci. Pollut. Res. 26, 24300–24304 (2019).
Google Scholar
Almagro Armenteros, J. J. et al. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat. Biotechnol. 37, 420–423 (2019).
Google Scholar
Yuan, X. L. et al. Investigations of solid culture-induced acquisition of desiccation tolerance in liquid suspension culture of Nostoc flagelliforme. J. Appl. Phycol. https://doi.org/10.1007/s10811-021-02550-9 (2021).
Google Scholar

