Preloader

Characterization of two β-galactosidases LacZ and WspA1 from Nostoc flagelliforme with focus on the latter’s central active region

  • 1.

    Saqib, S., Akram, A., Halim, S. A. & Tassaduq, R. Sources of β-galactosidase and its applications in food industry. 3 Biotech. 7, 79 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 2.

    Movahedpour, A. et al. β-Galactosidase: From its source and applications to its recombinant form. Biotechnol. Appl. Biochem. https://doi.org/10.1002/bab.2137 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 3.

    Husain, Q. Beta galactosidases and their potential applications: A review. Crit. Rev. Biotechnol. 30, 41–62 (2010).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 4.

    Benešová, E., Šućur, Z., Těšínský, M., Spiwok, V. & Lipovová, P. Transglycosylation abilities of β-d-galactosidases from GH family 2. 3 Biotech. 11, 168 (2021).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 5.

    Cheng, W. et al. Effects of a galacto-oligosaccharide-rich diet on fecal microbiota and metabolite profiles in mice. Food Funct. 9, 1612–1620 (2018).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 6.

    Chandrasekar, B. & van der Hoorn, R. A. Beta galactosidases in Arabidopsis and tomato—a mini review. Biochem. Soc. Trans. 44, 150–158 (2016).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 7.

    Lu, L., Guo, L., Wang, K., Liu, Y. & Xiao, M. β-Galactosidases: A great tool for synthesizing galactose-containing carbohydrates. Biotechnol. Adv. 39, 107465 (2020).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 8.

    Bartesaghi, A., Matthies, D., Banerjee, S., Merk, A. & Subramaniam, S. Structure of β-galactosidase at 3.2-Å resolution obtained by cryo-electron microscopy. Proc. Natl. Acad. Sci. USA 111, 11709–11714 (2014).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 9.

    Juers, D. H., Matthews, B. W. & Huber, R. E. LacZ β-galactosidase: Structure and function of an enzyme of historical and molecular biological importance. Protein Sci. 21, 1792–1807 (2012).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 10.

    Mangiagalli, M. & Lotti, M. Cold-active β-galactosidases: Insight into cold adaption mechanisms and biotechnological exploitation. Mar. Drugs 19, 43 (2021).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 11.

    Higuchi, Y. et al. Identification and characterization of a novel β-D-galactosidase that releases pyruvylated galactose. Sci. Rep. 8, 12013 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 12.

    Carneiro, L. A. B. C., Yu, L., Dupree, P. & Ward, R. J. Characterization of a β-galactosidase from Bacillus subtilis with transgalactosylation activity. Int. J. Biol. Macromol. 120, 279–287 (2018).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 13.

    Zanette, C. M., Mariano, A. B., Yukawa, Y. S., Mendes, I. & Spier, M. R. Microalgae mixotrophic cultivation for β-galactosidase production. J. Appl. Phycol. 31, 1597–1606 (2019).

    Article 
    CAS 

    Google Scholar 

  • 14.

    Bentahar, J., Doyen, A., Beaulieu, L. & Deschênes, J. S. Investigation of β-galactosidase production by microalga Tetradesmus obliquus in determined growth conditions. J. Appl. Phycol. 31, 301–308 (2019).

    Article 
    CAS 

    Google Scholar 

  • 15.

    Brasil, B. S. A. F., Siqueira, F. G., Salum, T. F. C., Zanette, Z. M. & Spier, M. R. Microalgae and cyanobacteria as enzyme biofactories. Alg. Res. 25, 76–89 (2017).

    Article 

    Google Scholar 

  • 16.

    Gao, K. Chinese studies on the edible blue-green alga, Nostoc flagelliforme: A review. J. App. Phycol. 10, 37–49 (1998).

    Article 

    Google Scholar 

  • 17.

    Morsy, F. M., Kuzuha, S., Takani, Y. & Sakamoto, T. Novel thermostable glycosidases in the extracellular matrix of the terrestrial cyanobacterium Nostoc commune. J. Gen. Appl. Microbiol. 54, 243–252 (2008).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 18.

    Liu, W., Cui, L., Xu, H., Zhu, Z. & Gao, X. Flexibility-rigidity coordination of the dense exopolysaccharide matrix in terrestrial cyanobacteria acclimated to periodic desiccation. Appl. Environ. Microbiol. 83, e01619–17 (2017).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • 19.

    Wright, D. J. et al. UV irradiation and desiccation modulate the three-dimensional extracellular matrix of Nostoc commune (Cyanobacteria). J. Biol. Chem. 280, 40271–40281 (2005).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 20.

    Gao, X., Xu, H. & Yuan, X. The overlooked genetic diversity in the dryland soil surface-dwelling cyanobacterium Nostoc flagelliforme as revealed by the marker gene wspA. Microb. Ecol. 81, 828–831 (2021).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 21.

    Shang, J. L. et al. Genomic and transcriptomic insights into the survival of the subaerial cyanobacterium Nostoc flagelliforme in arid and exposed habitats. Environ. Microbiol. 21, 845–863 (2019).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 22.

    Ai, Y., Yang, Y., Qiu, B. & Gao, X. Unique WSPA protein from terrestrial macroscopic cyanobacteria can confer resistance to osmotic stress in transgenic plants. World J. Microbiol. Biotechnol. 30, 2361–2369 (2014).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 23.

    Jones, G. L. ELECTROPHORESIS | One-Dimensional Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis. In Encyclopedia of Separation Science Vol. 137 (ed. Wilson, I. D.) 1309–1315 (Academic Press, 2000).

    Chapter 

    Google Scholar 

  • 24.

    Yang, Y. W. et al. Orange and red carotenoid proteins are involved in the adaptation of the terrestrial cyanobacterium Nostoc flagelliforme to desiccation. Photosynth. Res. 140, 103–113 (2019).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 25.

    Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 26.

    Irvine, G. B. Determination of molecular size by size-exclusion chromatography (gel filtration). Curr. Protoc. Cell Biol. 5, 5 (2001).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 27.

    Raadsveld, C. W. & Klomp, H. Thin-layer chromatographic analysis of sugar mixtures. J. Chromatogr. A 57, 99–106 (1971).

    Article 
    CAS 

    Google Scholar 

  • 28.

    Georgakis, N. et al. Determination of half-maximal inhibitory concentration of an enzyme inhibitor. Methods Mol. Biol. 2089, 41–46 (2020).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 29.

    Dai, G., Deblois, C. P., Liu, S., Juneau, P. & Qiu, B. Differential sensitivity of five cyanobacterial strains to ammonium toxicity and its inhibitory mechanism on the photosynthesis of rice-field cyanobacterium Ge-Xian-Mi (Nostoc). Aquat. Toxicol. 89, 113–121 (2008).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 30.

    Zhang, L. C., Chen, Y. F., Chen, W. L. & Zhang, C. C. Existence of periplasmic barriers preventing green fluorescent protein diffusion from cell to cell in the cyanobacterium Anabaena sp. strain PCC 7120. Mol. Microbiol. 70, 814–823 (2008).

    PubMed 
    CAS 
    PubMed Central 

    Google Scholar 

  • 31.

    Gao, X., Xu, H., Zhu, Z., She, Y. & Ye, S. Improved production of echinenone and canthaxanthin in transgenic Nostoc sp. PCC 7120 overexpressing a heterologous crtO gene from Nostoc flagelliforme. Microbiol. Res. 236, 126455 (2020).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 32.

    Wolk, C. P., Vonshak, A., Kehoe, P. & Elhai, J. Construction of shuttle vectors capable of conjugative transfer from Escherichia coli to nitrogen-fixing filamentous cyanobacteria. Proc. Natl. Acad. Sci. USA 81, 1561–1565 (1984).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 33.

    Zhao, X. M., Bi, Y. H., Chen, L., Hu, S. & Hu, Z. Y. Responses of photosynthetic activity in the drought-tolerant cyanobacterium, Nostoc flagelliforme to rehydration at different temperature. J. Arid Environ. 72, 370–377 (2008).

    ADS 
    Article 

    Google Scholar 

  • 34.

    Katoh, K., Misawa, K., Kuma, K. & Miyata, T. MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30, 3059–3066 (2002).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 35.

    Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 36.

    Minh, B. Q. et al. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530–1534 (2020).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 37.

    Madadlou, A., O’Sullivan, S. & Sheehan, D. Fast protein liquid chromatography. Methods Mol. Biol. 681, 439–447 (2011).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 38.

    McGuffin, L. J., Bryson, K. & Jones, D. T. The PSIPRED protein structure prediction server. Bioinformatics 16, 404–405 (2000).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 39.

    Huber, R. E., Parfett, C., Woulfe-Flanagan, H. & Thompson, D. J. Interaction of divalent cations with beta-galactosidase (Escherichia coli). Biochemistry 18, 4090–4095 (1979).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 40.

    Roth, N. J. & Huber, R. E. The beta-galactosidase (Escherichia coli) reaction is partly facilitated by interactions of His-540 with the C6 hydroxyl of galactose. J. Biol. Chem. 271, 14296–14301 (1996).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 41.

    Xu, J., McRae, M. A., Harron, S., Rob, B. & Huber, R. E. A study of the relationships of interactions between Asp-201, Na+ or K+, and galactosyl C6 hydroxyl and their effects on binding and reactivity of beta-galactosidase. Biochem. Cell Biol. 82, 275–284 (2004).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 42.

    Gräslund, S. et al. Protein production and purification. Nat. Methods 5, 135–146 (2008).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 43.

    Pawlak-Szukalska, A., Wanarska, M., Popinigis, A. T. & Kur, J. A novel cold-active β-d-galactosidase with transglycosylation activity from the Antarctic Arthrobacter sp. 32cB–Gene cloning, purification and characterization. Proc. Biochem. 49, 2122–2133 (2014).

    Article 
    CAS 

    Google Scholar 

  • 44.

    Wierzbicka-Woś, A. et al. A novel cold-active β-D-galactosidase from the Paracoccus sp. 32d–Gene cloning, purification and characterization. Microb. Cell Fact. 10, 108 (2011).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 45.

    Arima, H. et al. Molecular genetic and chemotaxonomic characterization of the terrestrial cyanobacterium Nostoc commune and its neighboring species. FEMS Microbiol. Ecol. 79, 34–45 (2012).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 46.

    Gao, X., Liu, L. T. & Liu, B. Dryland cyanobacterial exopolysaccharides show protection against acid deposition damage. Environ. Sci. Pollut. Res. 26, 24300–24304 (2019).

    Article 
    CAS 

    Google Scholar 

  • 47.

    Almagro Armenteros, J. J. et al. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat. Biotechnol. 37, 420–423 (2019).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 48.

    Yuan, X. L. et al. Investigations of solid culture-induced acquisition of desiccation tolerance in liquid suspension culture of Nostoc flagelliforme. J. Appl. Phycol. https://doi.org/10.1007/s10811-021-02550-9 (2021).

    Article 

    Google Scholar 

  • Source link