Regev, A. et al. The Human Cell Atlas. eLife 6, e27041 (2017).
Google Scholar
Rozenblatt-Rosen, O., Stubbington, M. J. T., Regev, A. & Teichmann, S. A. The Human Cell Atlas: from vision to reality. Nature 550, 451–453 (2017).
Google Scholar
Aldridge, S. & Teichmann, S. A. Single cell transcriptomics comes of age. Nat. Commun. 11, 4307 (2020).
Google Scholar
Popescu, D. M. et al. Decoding human fetal liver haematopoiesis. Nature 574, 365–371 (2019).
Google Scholar
Madissoon, E. et al. scRNA-seq assessment of the human lung, spleen, and esophagus tissue stability after cold preservation. Genome Biol. 21, 1 (2019).
Google Scholar
Hagai, T. et al. Gene expression variability across cells and species shapes innate immunity. Nature 563, 197–202 (2018).
Google Scholar
Vento-Tormo, R. et al. Single-cell reconstruction of the early maternal–fetal interface in humans. Nature 563, 347–353 (2018).
Google Scholar
Hodge, R. D. et al. Conserved cell types with divergent features in human versus mouse cortex. Nature 573, 61–68 (2019).
Google Scholar
Drokhlyansky, E. et al. The human and mouse enteric nervous system at single-cell resolution. Cell 182, 1606–1622.e23 (2020).
Google Scholar
Elmentaite, R. et al. Cells of the human intestinal tract mapped across space and time. Nature 597, 250–255 (2021).
Google Scholar
Bodenreider, O. & Stevens, R. Bio-ontologies: current trends and future directions. Brief. Bioinform 7, 256–274 (2006).
Google Scholar
Diehl, A. D. et al. The Cell Ontology 2016: enhanced content, modularization, and ontology interoperability. J. Biomed. Semant. 7, 44 (2016).
Costa, M., Reeve, S., Grumbling, G. & Osumi-Sutherland, D. The Drosophila anatomy ontology. J. Biomed. Semant. 4, 32 (2013).
Consortium, E. P. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).
Smith, B. et al. The OBO Foundry: coordinated evolution of ontologies to support biomedical data integration. Nat. Biotechnol. 25, 1251–1255 (2007).
Google Scholar
Milyaev, N. et al. The Virtual Fly Brain browser and query interface. Bioinformatics 28, 411–415 (2012).
Google Scholar
Osumi-Sutherland, D., Costa, M., Court, R. & O’Kane, C. J. Virtual Fly Brain—using OWL to support the mapping and genetic dissection of the Drosophila brain. CEUR Workshop Proc. 1265, 85–96 (2014).
Google Scholar
Li, H. et al. Fly Cell Atlas: a single-cell transcriptomic atlas of the adult fruit fly. Preprint at bioRxiv https://doi.org/10.1101/2021.07.04.451050 (2021).
Gene Ontology, C. The Gene Ontology resource: enriching a GOld mine. Nucleic Acids Res. 49, D325–D334 (2021).
Mungall, C. J. et al. The Monarch Initiative: an integrative data and analytic platform connecting phenotypes to genotypes across species. Nucleic Acids Res. 45, D712–D722 (2017).
Google Scholar
Jacqz, E., Branch, R. A., Heidemann, H. & Aujard, Y. [Prevention of nephrotoxicity of amphotericin B during the treatment of deep candidiasis]. Ann. Biol. Clin. (Paris) 45, 689–693 (1987).
Google Scholar
Hu, B. C. The human body at cellular resolution: the NIH Human Biomolecular Atlas Program. Nature 574, 187–192 (2019).
Ecker, J. R. et al. The BRAIN Initiative Cell Census Consortium: lessons learned toward generating a comprehensive brain cell atlas. Neuron 96, 542–557 (2017).
Google Scholar
Young, M. D. et al. Single-cell transcriptomes from human kidneys reveal the cellular identity of renal tumors. Science 361, 594–599 (2018).
Google Scholar
Sungnak, W. et al. SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nat. Med. 26, 681–687 (2020).
Google Scholar
Muus, C. et al. Single-cell meta-analysis of SARS-CoV-2 entry genes across tissues and demographics. Nat. Med. 27, 546–559 (2021).
Google Scholar
Delorey, T. M. et al. COVID-19 tissue atlases reveal SARS-CoV-2 pathology and cellular targets. Nature 595, 107–113 (2021).
Google Scholar
Mungall, C. J., Torniai, C., Gkoutos, G. V., Lewis, S. E. & Haendel, M. A. Uberon, an integrative multi-species anatomy ontology. Genome Biol. 13, R5 (2012).
Google Scholar
Bernard, A., Boumsell, L., Daussett, J., Milstein, C. & Schlossman, S. F. (eds) Leucocyte Typing: Human Leucocyte Differentiation Antigens Detected by Monoclonal Antibodies: Specification, Classification, Nomenclature = Typage Leucocytaire: Antigènes de Différenciation Leococytaire Humains Révélés par les Anticorps Monoclonaux (Springer, 1984).
Reinherz, E. L., Haynes, B. F., Nadler, L. M. & Bernstein, I. D. (eds) Leukocyte Typing II (Springer, 1986).
McMichael, A. J. (ed.) Leucocyte Typing III: White Cell Differentiation Antigens (Oxford Univ. Press, 1987).
Knapp, W. et al. (eds) Leucocyte Typing IV: White Cell Differentiation Antigens (Oxford Univ. Press, 1989).
Schlossman, S. F. (ed.) Leucocyte typing V: white cell differentiation antigens. In Proc. Fifth International Workshop and Conference held in Boston, USA, 3–7 November, 1993 (Oxford Univ. Press, 1995).
Kishimoto, T. (ed.) Leucocyte typing VI: white cell differentiation antigens. In Proc. Sixth International Workshop and Conference held in Kobe, Japan, 10–14 November 1996 (Garland, 1998).
Mason, D. (ed.) Leucocyte typing VII: white cell differentiation antigens. In Proc. Seventh International Workshop and Conference held in Harrogate, United Kingdom (Oxford University Press: Oxford, 2002).
Zola, H., Swart, B., Nicholson, I. & Voss, E. Leukocyte and Stromal Cell Molecules: The CD Markers (Wiley-Liss, 2007).
Yuste, R. et al. A community-based transcriptomics classification and nomenclature of neocortical cell types. Nat. Neurosci. 23, 1456–1468 (2020).
Google Scholar
Shekhar, K. et al. Comprehensive classification of retinal bipolar neurons by single-cell transcriptomics. Cell 166, 1308–1323.e30 (2016).
Google Scholar
Vermeiren, S., Bellefroid, E. J. & Desiderio, S. Vertebrate sensory ganglia: common and divergent features of the transcriptional programs generating their functional specialization. Front. Cell Dev. Biol. 8, 587699 (2020).
Google Scholar
Driskell, R. R. & Watt, F. M. Understanding fibroblast heterogeneity in the skin. Trends Cell Biol. 25, 92–99 (2015).
Google Scholar
Miao, Z. et al. Putative cell type discovery from single-cell gene expression data. Nat. Methods 17, 621–628 (2020).
Google Scholar
Bakken, T. E. et al. Comparative cellular analysis of motor cortex in human, marmoset and mouse. Nature 598, 111–119 (2021).
Google Scholar
Miller, J. A. et al. Common cell type nomenclature for the mammalian brain. eLife 9, e59928 (2020).
Google Scholar
Börner, K. et al. Anatomical structures, cell types and biomarkers of the Human Reference Atlas. Nat. Cell Biol. https://doi.org/10.1038/s41556-021-00788-6 (2021).
Qi, Z. et al. Single-cell deconvolution of head and neck squamous cell carcinoma. Cancers (Basel) 13, 2387 (2021).
Kiselev, V. Y., Yiu, A. & Hemberg, M. scmap: projection of single-cell RNA-seq data across data sets. Nat. Methods 15, 359–362 (2018).
Google Scholar
Kimmel, J. C. & Kelley, D. R. Semi-supervised adversarial neural networks for single-cell classification. Genome Res. 31, 1781–1793 (2021).
Google Scholar
Domínguez, C.C. et al. Cross-tissue immune cell analysis reveals tissue-specific adaptations and clonal architecture across the human body. Preprint at bioRxiv https://doi.org/10.1101/2021.04.28.441762 (2021).
Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587.e29 (2021).
Google Scholar
Aran, D. et al. Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat. Immunol. 20, 163–172 (2019).
Google Scholar
Bernstein, M. N., Ma, Z., Gleicher, M. & Dewey, C. N. CellO: comprehensive and hierarchical cell type classification of human cells with the Cell Ontology. iScience 24, 101913 (2021).
Google Scholar
Hou, R., Denisenko, E. & Forrest, A. R. R. scMatch: a single-cell gene expression profile annotation tool using reference datasets. Bioinformatics 35, 4688–4695 (2019).
Google Scholar
Orvis, J. et al. gEAR: gene expression analysis resource portal for community-driven, multi-omic data exploration. Nat. Methods 18, 843–844 (2021).
Google Scholar
Megill, C. et al. cellxgene: a performant, scalable exploration platform for high dimensional sparse matrices. Preprint at bioRxiv https://doi.org/10.1101/2021.04.05.438318 (2021).
Stewart, B. J. et al. Spatiotemporal immune zonation of the human kidney. Science 365, 1461–1466 (2019).
Google Scholar
James, K. R. et al. Distinct microbial and immune niches of the human colon. Nat. Immunol. 21, 343–353 (2020).
Google Scholar
Vieira Braga, F. A. et al. A cellular census of human lungs identifies novel cell states in health and in asthma. Nat. Med. 25, 1153–1163 (2019).
Google Scholar
Travaglini, K. J. et al. A molecular cell atlas of the human lung from single-cell RNA sequencing. Nature 587, 619–625 (2020).
Google Scholar
Ramachandran, P. et al. Resolving the fibrotic niche of human liver cirrhosis at single-cell level. Nature 575, 512–518 (2019).
Google Scholar
Aizarani, N. et al. A human liver cell atlas reveals heterogeneity and epithelial progenitors. Nature 572, 199–204 (2019).
Google Scholar
Litvinukova, M. et al. Cells of the adult human heart. Nature 588, 466–472 (2020).
Google Scholar
Park, J. E. et al. A cell atlas of human thymic development defines T cell repertoire formation. Science 367, eaay3224 (2020).
Google Scholar
Reynolds, G. et al. Developmental cell programs are co-opted in inflammatory skin disease. Science 371, eaba6500 (2021).
Google Scholar
Garcia-Alonso, L. et al. Mapping the temporal and spatial dynamics of the human endometrium in vivo and in vitro. Nat. Genetics https://doi.org/10.1038/s41588-021-00972-2 (2021).

