Preloader

Cell type ontologies of the Human Cell Atlas

  • 1.

    Regev, A. et al. The Human Cell Atlas. eLife 6, e27041 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 2.

    Rozenblatt-Rosen, O., Stubbington, M. J. T., Regev, A. & Teichmann, S. A. The Human Cell Atlas: from vision to reality. Nature 550, 451–453 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 3.

    Aldridge, S. & Teichmann, S. A. Single cell transcriptomics comes of age. Nat. Commun. 11, 4307 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 4.

    Popescu, D. M. et al. Decoding human fetal liver haematopoiesis. Nature 574, 365–371 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 5.

    Madissoon, E. et al. scRNA-seq assessment of the human lung, spleen, and esophagus tissue stability after cold preservation. Genome Biol. 21, 1 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 6.

    Hagai, T. et al. Gene expression variability across cells and species shapes innate immunity. Nature 563, 197–202 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 7.

    Vento-Tormo, R. et al. Single-cell reconstruction of the early maternal–fetal interface in humans. Nature 563, 347–353 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 8.

    Hodge, R. D. et al. Conserved cell types with divergent features in human versus mouse cortex. Nature 573, 61–68 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 9.

    Drokhlyansky, E. et al. The human and mouse enteric nervous system at single-cell resolution. Cell 182, 1606–1622.e23 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 10.

    Elmentaite, R. et al. Cells of the human intestinal tract mapped across space and time. Nature 597, 250–255 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 11.

    Bodenreider, O. & Stevens, R. Bio-ontologies: current trends and future directions. Brief. Bioinform 7, 256–274 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • 12.

    Diehl, A. D. et al. The Cell Ontology 2016: enhanced content, modularization, and ontology interoperability. J. Biomed. Semant. 7, 44 (2016).

    Google Scholar 

  • 13.

    Costa, M., Reeve, S., Grumbling, G. & Osumi-Sutherland, D. The Drosophila anatomy ontology. J. Biomed. Semant. 4, 32 (2013).

    Google Scholar 

  • 14.

    Consortium, E. P. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).

    Google Scholar 

  • 15.

    Smith, B. et al. The OBO Foundry: coordinated evolution of ontologies to support biomedical data integration. Nat. Biotechnol. 25, 1251–1255 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 16.

    Milyaev, N. et al. The Virtual Fly Brain browser and query interface. Bioinformatics 28, 411–415 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • 17.

    Osumi-Sutherland, D., Costa, M., Court, R. & O’Kane, C. J. Virtual Fly Brain—using OWL to support the mapping and genetic dissection of the Drosophila brain. CEUR Workshop Proc. 1265, 85–96 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 18.

    Li, H. et al. Fly Cell Atlas: a single-cell transcriptomic atlas of the adult fruit fly. Preprint at bioRxiv https://doi.org/10.1101/2021.07.04.451050 (2021).

  • 19.

    Gene Ontology, C. The Gene Ontology resource: enriching a GOld mine. Nucleic Acids Res. 49, D325–D334 (2021).

    Google Scholar 

  • 20.

    Mungall, C. J. et al. The Monarch Initiative: an integrative data and analytic platform connecting phenotypes to genotypes across species. Nucleic Acids Res. 45, D712–D722 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 21.

    Jacqz, E., Branch, R. A., Heidemann, H. & Aujard, Y. [Prevention of nephrotoxicity of amphotericin B during the treatment of deep candidiasis]. Ann. Biol. Clin. (Paris) 45, 689–693 (1987).

    CAS 

    Google Scholar 

  • 22.

    Hu, B. C. The human body at cellular resolution: the NIH Human Biomolecular Atlas Program. Nature 574, 187–192 (2019).

    Google Scholar 

  • 23.

    Ecker, J. R. et al. The BRAIN Initiative Cell Census Consortium: lessons learned toward generating a comprehensive brain cell atlas. Neuron 96, 542–557 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 24.

    Young, M. D. et al. Single-cell transcriptomes from human kidneys reveal the cellular identity of renal tumors. Science 361, 594–599 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 25.

    Sungnak, W. et al. SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nat. Med. 26, 681–687 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 26.

    Muus, C. et al. Single-cell meta-analysis of SARS-CoV-2 entry genes across tissues and demographics. Nat. Med. 27, 546–559 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • 27.

    Delorey, T. M. et al. COVID-19 tissue atlases reveal SARS-CoV-2 pathology and cellular targets. Nature 595, 107–113 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 28.

    Mungall, C. J., Torniai, C., Gkoutos, G. V., Lewis, S. E. & Haendel, M. A. Uberon, an integrative multi-species anatomy ontology. Genome Biol. 13, R5 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 29.

    Bernard, A., Boumsell, L., Daussett, J., Milstein, C. & Schlossman, S. F. (eds) Leucocyte Typing: Human Leucocyte Differentiation Antigens Detected by Monoclonal Antibodies: Specification, Classification, Nomenclature = Typage Leucocytaire: Antigènes de Différenciation Leococytaire Humains Révélés par les Anticorps Monoclonaux (Springer, 1984).

  • 30.

    Reinherz, E. L., Haynes, B. F., Nadler, L. M. & Bernstein, I. D. (eds) Leukocyte Typing II (Springer, 1986).

  • 31.

    McMichael, A. J. (ed.) Leucocyte Typing III: White Cell Differentiation Antigens (Oxford Univ. Press, 1987).

  • 32.

    Knapp, W. et al. (eds) Leucocyte Typing IV: White Cell Differentiation Antigens (Oxford Univ. Press, 1989).

  • 33.

    Schlossman, S. F. (ed.) Leucocyte typing V: white cell differentiation antigens. In Proc. Fifth International Workshop and Conference held in Boston, USA, 3–7 November, 1993 (Oxford Univ. Press, 1995).

  • 34.

    Kishimoto, T. (ed.) Leucocyte typing VI: white cell differentiation antigens. In Proc. Sixth International Workshop and Conference held in Kobe, Japan, 10–14 November 1996 (Garland, 1998).

  • 35.

    Mason, D. (ed.) Leucocyte typing VII: white cell differentiation antigens. In Proc. Seventh International Workshop and Conference held in Harrogate, United Kingdom (Oxford University Press: Oxford, 2002).

  • 36.

    Zola, H., Swart, B., Nicholson, I. & Voss, E. Leukocyte and Stromal Cell Molecules: The CD Markers (Wiley-Liss, 2007).

  • 37.

    Yuste, R. et al. A community-based transcriptomics classification and nomenclature of neocortical cell types. Nat. Neurosci. 23, 1456–1468 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 38.

    Shekhar, K. et al. Comprehensive classification of retinal bipolar neurons by single-cell transcriptomics. Cell 166, 1308–1323.e30 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 39.

    Vermeiren, S., Bellefroid, E. J. & Desiderio, S. Vertebrate sensory ganglia: common and divergent features of the transcriptional programs generating their functional specialization. Front. Cell Dev. Biol. 8, 587699 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 40.

    Driskell, R. R. & Watt, F. M. Understanding fibroblast heterogeneity in the skin. Trends Cell Biol. 25, 92–99 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 41.

    Miao, Z. et al. Putative cell type discovery from single-cell gene expression data. Nat. Methods 17, 621–628 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 42.

    Bakken, T. E. et al. Comparative cellular analysis of motor cortex in human, marmoset and mouse. Nature 598, 111–119 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 43.

    Miller, J. A. et al. Common cell type nomenclature for the mammalian brain. eLife 9, e59928 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 44.

    Börner, K. et al. Anatomical structures, cell types and biomarkers of the Human Reference Atlas. Nat. Cell Biol. https://doi.org/10.1038/s41556-021-00788-6 (2021).

  • 45.

    Qi, Z. et al. Single-cell deconvolution of head and neck squamous cell carcinoma. Cancers (Basel) 13, 2387 (2021).

    Google Scholar 

  • 46.

    Kiselev, V. Y., Yiu, A. & Hemberg, M. scmap: projection of single-cell RNA-seq data across data sets. Nat. Methods 15, 359–362 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 47.

    Kimmel, J. C. & Kelley, D. R. Semi-supervised adversarial neural networks for single-cell classification. Genome Res. 31, 1781–1793 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 48.

    Domínguez, C.C. et al. Cross-tissue immune cell analysis reveals tissue-specific adaptations and clonal architecture across the human body. Preprint at bioRxiv https://doi.org/10.1101/2021.04.28.441762 (2021).

  • 49.

    Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587.e29 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 50.

    Aran, D. et al. Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat. Immunol. 20, 163–172 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 51.

    Bernstein, M. N., Ma, Z., Gleicher, M. & Dewey, C. N. CellO: comprehensive and hierarchical cell type classification of human cells with the Cell Ontology. iScience 24, 101913 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • 52.

    Hou, R., Denisenko, E. & Forrest, A. R. R. scMatch: a single-cell gene expression profile annotation tool using reference datasets. Bioinformatics 35, 4688–4695 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 53.

    Orvis, J. et al. gEAR: gene expression analysis resource portal for community-driven, multi-omic data exploration. Nat. Methods 18, 843–844 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • 54.

    Megill, C. et al. cellxgene: a performant, scalable exploration platform for high dimensional sparse matrices. Preprint at bioRxiv https://doi.org/10.1101/2021.04.05.438318 (2021).

  • 55.

    Stewart, B. J. et al. Spatiotemporal immune zonation of the human kidney. Science 365, 1461–1466 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 56.

    James, K. R. et al. Distinct microbial and immune niches of the human colon. Nat. Immunol. 21, 343–353 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 57.

    Vieira Braga, F. A. et al. A cellular census of human lungs identifies novel cell states in health and in asthma. Nat. Med. 25, 1153–1163 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 58.

    Travaglini, K. J. et al. A molecular cell atlas of the human lung from single-cell RNA sequencing. Nature 587, 619–625 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 59.

    Ramachandran, P. et al. Resolving the fibrotic niche of human liver cirrhosis at single-cell level. Nature 575, 512–518 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 60.

    Aizarani, N. et al. A human liver cell atlas reveals heterogeneity and epithelial progenitors. Nature 572, 199–204 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 61.

    Litvinukova, M. et al. Cells of the adult human heart. Nature 588, 466–472 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 62.

    Park, J. E. et al. A cell atlas of human thymic development defines T cell repertoire formation. Science 367, eaay3224 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 63.

    Reynolds, G. et al. Developmental cell programs are co-opted in inflammatory skin disease. Science 371, eaba6500 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 64.

    Garcia-Alonso, L. et al. Mapping the temporal and spatial dynamics of the human endometrium in vivo and in vitro. Nat. Genetics https://doi.org/10.1038/s41588-021-00972-2 (2021).

  • Source link