Preloader

Cargo loading within ferritin nanocages in preparation for tumor-targeted delivery

  • 1.

    Kim, B. Y. S., Rutka, J. T. & Chan, W. C. W. Nanomedicine. N. Engl. J. Med. 363, 2434–2443 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 2.

    Meel, R. et al. Smart cancer nanomedicine. Nat. Nanotechnol. 14, 1007–1017 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 3.

    Harmsen, S., Wall, M. A., Huang, R. & Kircher, M. F. Cancer imaging using surface-enhanced resonance Raman scattering nanoparticles. Nat. Protoc. 12, 1400–1414 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 4.

    Nam, J. et al. Cancer nanomedicine for combination cancer immunotherapy. Nat Rev. Mater. 4, 398–414 (2019).

    Article 

    Google Scholar 

  • 5.

    Sanhai, W. R., Sakamoto, J. H., Canady, R. & Ferrari, M. Seven challenges for nanomedicine. Nat. Nanotechnol. 3, 242–244 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 6.

    Shi, J., Kantoff, P. W., Wooster, R. & Farokhzad, O. C. Cancer nanomedicine: progress, challenges and opportunities. Nat. Rev. Cancer 17, 20–37 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 7.

    Docter, D. et al. Quantitative profiling of the protein coronas that form around nanoparticles. Nat. Protoc. 9, 2030–2044 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 8.

    Martin, J. D., Cabral, H., Stylianopoulos, T. & Jain, R. K. Improving cancer immunotherapy using nanomedicines: progress, opportunities and challenges. Nat. Rev. Clin. Oncol. 17, 251–266 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 9.

    Zhang, J. et al. Biochemistry of mammalian ferritins in the regulation of cellular iron homeostasis and oxidative responses. Sci. China Life Sci. 64, 352–362 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 10.

    Harrison, P. M. & Arosio, P. The ferritins: molecular properties, iron storage function and cellular regulation. Biochim. Biophys. Acta 1275, 161–203 (1996).

    PubMed 
    Article 

    Google Scholar 

  • 11.

    Fan, K. et al. Magnetoferritin nanoparticles for targeting and visualizing tumour tissues. Nat. Nanotechnol. 7, 459–464 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 12.

    Li, L. et al. Binding and uptake of H-ferritin are mediated by human transferrin receptor-1. Proc. Natl Acad. Sci. USA 107, 3505–3510 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 13.

    Zhen, Z. et al. RGD-modified apoferritin nanoparticles for efficient drug delivery to tumors. ACS Nano 7, 4830–4837 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 14.

    Lin, X. et al. Hybrid ferritin nanoparticles as activatable probes for tumor imaging. Angew. Chem. Int. Ed. Engl. 50, 1569–1572 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 15.

    Jutz, G. N. et al. Ferritin: a versatile building block for bionanotechnology. Chem. Rev. 115, 1653–1701 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 16.

    Gao, F. et al. Hypoxia-tropic nanozymes as oxygen generators for tumor-favoring theranostics. Biomaterials. 230, 119635 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 17.

    Liang, M. et al. H-ferritin–nanocaged doxorubicin nanoparticles specifically target and kill tumors with a single-dose injection. Proc. Natl Acad. Sci. USA 111, 14900–14905 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 18.

    Wang, T. et al. Bioengineered magnetoferritin nanozymes for pathological identification of high-risk and ruptured atherosclerotic plaques in humans. Nano Res. 12, 863–868 (2019).

    CAS 
    Article 

    Google Scholar 

  • 19.

    Zhao, Y. et al. Bioengineered magnetoferritin nanoprobes for single-dose nuclear-magnetic resonance tumor imaging. ACS Nano 10, 4184–4191 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 20.

    Li, Y. et al. Nanoparticle ferritin-bound erastin and rapamycin: a nanodrug combining autophagy and ferroptosis for anticancer therapy. Biomater. Sci. 7, 3779–3787 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 21.

    Cheng, X. et al. TfR1 binding with H-ferritin nanocarrier achieves prognostic diagnosis and enhances the therapeutic efficacy in clinical gastric cancer. Cell Death Dis. 11, 1–13 (2020).

    CAS 
    Article 

    Google Scholar 

  • 22.

    Macone, A. et al. Ferritin nanovehicle for targeted delivery of cytochrome C to cancer cells. Sci. Rep. 9, 11749 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 23.

    Zhang, C., Zhang, X. & Zhao, G. Ferritin nanocage: a versatile nanocarrier utilized in the field of food, nutrition, and medicine. Nanomaterials (Basel) 10, 1894 (2020).

    CAS 
    Article 

    Google Scholar 

  • 24.

    Tetter, S. & Hilvert, D. Enzyme encapsulation by a ferritin cage. Angew. Chem. Int. Ed. Engl. 56, 14933–14936 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 25.

    Khoshnejad, M., Parhiz, H., Shuvaev, V. V., Dmochowski, I. J. & Muzykantov, V. R. Ferritin-based drug delivery systems: hybrid nanocarriers for vascular immunotargeting. J. Control. Release 282, 13–24 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 26.

    Li, L. et al. Ferritin-mediated siRNA delivery and gene silencing in human tumor and primary cells. Biomaterials 98, 143–151 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 27.

    Wang, Z. et al. Metal ion assisted interface re-engineering of a ferritin nanocage for enhanced biofunctions and cancer therapy. Nanoscale 10, 1135–1144 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 28.

    Uchida, M. et al. Targeting of cancer cells with ferrimagnetic ferritin cage nanoparticles. J. Am. Chem. Soc. 128, 16626–16633 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 29.

    Truffi, M. et al. Ferritin nanocages: a biological platform for drug delivery, imaging and theranostics in cancer. Pharmacol. Res. 107, 57–65 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 30.

    Wang, Z. et al. Functional ferritin nanoparticles for biomedical applications. Front. Chem. Sci. Eng. 11, 633–646 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 31.

    Wang, Z. et al. Biomineralization-inspired synthesis of copper sulfide–ferritin nanocages as cancer theranostics. ACS Nano 10, 3453–3460 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 32.

    Lin, X. et al. Chimeric ferritin nanocages for multiple function loading and multimodal imaging. Nano Lett. 11, 814–819 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 33.

    Chauhan, V. P. et al. Normalization of tumour blood vessels improves the delivery of nanomedicines in a size-dependent manner. Nat. Nanotechnol. 7, 383–388 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 34.

    Huang, X. et al. Protein nanocages that penetrate airway mucus and tumor tissue. Proc. Natl Acad. Sci. USA 114, E6595–E6602 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 35.

    Li, X. et al. Epidermal growth factor–ferritin H-chain protein nanoparticles for tumor active targeting. Small 8, 2505–2514 (2012).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 36.

    Bitonto, V. et al. L-ferritin: a theranostic agent of natural origin for MRI visualization and treatment of breast cancer. J. Control. Release 319, 300–310 (2020).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 37.

    Zhen, Z. et al. Ferritin nanocages to encapsulate and deliver photosensitizers for efficient photodynamic therapy against cancer. ACS Nano 7, 6988–6996 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 38.

    Kuruppu, A. I. et al. An apoferritin-based drug delivery system for the tyrosine kinase inhibitor gefitinib. Adv. Healthc. Mater. 4, 2816–2821 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 39.

    Zhou, H. et al. Mn-loaded apolactoferrin dots for in vivo MRI and NIR-II cancer imaging. J. Mater. Chem. C 7, 9448–9454 (2019).

    CAS 
    Article 

    Google Scholar 

  • 40.

    Fan, J. et al. Direct evidence for catalase and peroxidase activities of ferritin–platinum nanoparticles. Biomaterials 32, 1611–1618 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 41.

    Yang, Z. et al. Encapsulation of platinum anticancer drugs by apoferritin. Chem. Commun. (Camb) 33, 3453–3455 (2007).

    Article 
    CAS 

    Google Scholar 

  • 42.

    Kim, M. et al. pH-dependent structures of ferritin and apoferritin in solution: disassembly and reassembly. Biomacromolecules 12, 1629–1640 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 43.

    He, J., Fan, K. & Yan, X. Ferritin drug carrier (FDC) for tumor targeting therapy. J. Control Release 311, 288–300 (2019).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 44.

    Tesarova, B., Musilek, K., Rex, S. & Heger, Z. Taking advantage of cellular uptake of ferritin nanocages for targeted drug delivery. J. Control Release 325, 176–190 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 45.

    Liu, X. et al. Apoferritin–CeO 2 nano-truffle that has excellent artificial redox enzyme activity. Chem. Commun. (Camb) 48, 3155–3157 (2012).

    CAS 
    Article 

    Google Scholar 

  • 46.

    Iwahori, K., Yoshizawa, K., Muraoka, M. & Yamashita, I. Fabrication of ZnSe nanoparticles in the apoferritin cavity by designing a slow chemical reaction system. Inorg. Chem. 44, 6393–6400 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 47.

    Naito, M., Iwahori, K., Miura, A., Yamane, M. & Yamashita, I. Circularly polarized luminescent CdS quantum dots prepared in a protein nanocage. Angew. Chem. Int. Ed. Engl. 49, 7006–7009 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 48.

    Yamashita, I., Hayashi, J. & Hara, M. Bio-template synthesis of uniform CdSe nanoparticles using cage-shaped protein, apoferritin. Chem. Lett. 33, 1158–1159 (2004).

    CAS 
    Article 

    Google Scholar 

  • 49.

    Klem, M. T., Mosolf, J., Young, M. & Douglas, T. Photochemical mineralization of europium, titanium, and iron oxyhydroxide nanoparticles in the ferritin protein cage. Inorg. Chem. 47, 2237–2239 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 50.

    Hosein, H.-A., Strongin, D. R., Allen, M. & Douglas, T. Iron and cobalt oxide and metallic nanoparticles prepared from ferritin. Langmuir. 20, 10283–10287 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 51.

    Monti, D. M., Ferraro, G. & Merlino, A. Ferritin-based anticancer metallodrug delivery: crystallographic, analytical and cytotoxicity studies. Nanomedicine 20, 101997 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 52.

    Falvo, E. et al. Antibody–drug conjugates: targeting melanoma with cisplatin encapsulated in protein-cage nanoparticles based on human ferritin. Nanoscale 5, 12278–12285 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 53.

    Liu, W. et al. Target delivering paclitaxel by ferritin heavy chain nanocages for glioma treatment. J. Control. Release 323, 191–202 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 54.

    Liu, M., Zhu, Y., Wu, T., Cheng, J. & Liu, Y. Nanobody-ferritin conjugate for targeted photodynamic therapy. Chemistry 26, 7442–7450 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 55.

    Lee, E. J. et al. Engineered proteinticles for targeted delivery of siRNA to cancer cells. Adv. Funct. Mater. 25, 1279–1286 (2015).

    CAS 
    Article 

    Google Scholar 

  • 56.

    Wang, W. et al. Ferritin nanoparticle-based SpyTag/SpyCatcher-enabled click vaccine for tumor immunotherapy. Nanomedicine 16, 69–78 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 57.

    Falvo, E. et al. The presence of glutamate residues on the PAS sequence of the stimuli-sensitive nano-ferritin improves in vivo biodistribution and mitoxantrone encapsulation homogeneity. J. Control. Release 275, 177–185 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 58.

    Huang, P. et al. Dye-loaded ferritin nanocages for multimodal imaging and photothermal therapy. Adv. Mater. 26, 6401–6408 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 59.

    Chen, L. et al. Encapsulation of β-carotene within ferritin nanocages greatly increases its water-solubility and thermal stability. Food Chem. 149, 307–312 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 60.

    Huang, C. et al. Ultra-high loading of sinoporphyrin sodium in ferritin for single-wave motivated photothermal and photodynamic co-therapy. Biomater. Sci. 5, 1512–1516 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 61.

    Li, K. et al. Multifunctional ferritin cage nanostructures for fluorescence and MR imaging of tumor cells. Nanoscale 4, 188–193 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 62.

    Kim, H.-K. et al. Highly brain-permeable apoferritin nanocage with high dysprosium loading capacity as a new T2 contrast agent for ultra-high field magnetic resonance imaging. Biomaterials 243, 119939 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 63.

    Crich, S. G. et al. Magnetic resonance visualization of tumor angiogenesis by targeting neural cell adhesion molecules with the highly sensitive gadolinium-loaded apoferritin probe. Cancer Res. 66, 9196–9201 (2006).

    Article 
    CAS 

    Google Scholar 

  • 64.

    Cai, Y., Wang, Y., Zhang, T. & Pan, Y. Gadolinium-labeled ferritin nanoparticles as T 1 contrast agents for magnetic resonance imaging of tumors. ACS Appl. Nano Mater. 3, 8771–8783 (2020).

    CAS 
    Article 

    Google Scholar 

  • 65.

    Sánchez, P. et al. MRI relaxation properties of water-soluble apoferritin-encapsulated gadolinium oxide-hydroxide nanoparticles. Dalton Trans. 5, 800–804 (2009).

    Article 

    Google Scholar 

  • 66.

    Liang, M. et al. Bioengineered H-ferritin nanocages for quantitative imaging of vulnerable plaques in atherosclerosis. ACS Nano 12, 9300–9308 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 67.

    Jiang, B. et al. Biomineralization synthesis of the cobalt nanozyme in SP94-ferritin nanocages for prognostic diagnosis of hepatocellular carcinoma. ACS Appl. Mater. Interfaces 11, 9747–9755 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 68.

    Butts, C. A. et al. Directing noble metal ion chemistry within a designed ferritin protein. Biochemistry 47, 12729–12739 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 69.

    Iwahori, K., Takagi, R., Kishimoto, N. & Yamashita, I. A size controlled synthesis of CuS nano-particles in the protein cage, apoferritin. Mater. Lett. 65, 3245–3247 (2011).

    CAS 
    Article 

    Google Scholar 

  • 70.

    Gálvez, N., Sánchez, P. & Domínguez-Vera, J. M. Preparation of Cu and CuFe Prussian Blue derivative nanoparticles using the apoferritin cavity as nanoreactor. Dalton Trans. 15, 2492–2494 (2005).

    Article 
    CAS 

    Google Scholar 

  • 71.

    Gálvez, N. et al. Apoferritin-encapsulated Ni and Co superparamagnetic nanoparticles. J. Mater. Chem. 16, 2757–2761 (2006).

    Article 

    Google Scholar 

  • 72.

    Kashanian, S., Tarighat, F. & Rafipour, R. Biomimetic synthesis of cobalt nanoparticle using apoferritin and its application in electrochemical reaction to detect glucose. New Biotechnol. 25, S376 (2009).

    Article 

    Google Scholar 

  • 73.

    Kashanian, S., Tarighat, F. A., Rafipour, R. & Abbasi-Tarighat, M. Biomimetic synthesis and characterization of cobalt nanoparticles using apoferritin, and investigation of direct electron transfer of Co (NPs)–ferritin at modified glassy carbon electrode to design a novel nanobiosensor. Mol. Biol. Rep. 39, 8793–8802 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 74.

    Warne, B., Kasyutich, O. I., Mayes, E. L., Wiggins, J. A. L. & Wong, K. K. W. Self assembled nanoparticulate Co: Pt for data storage applications. IEEE Trans. Magn. 36, 3009–3011 (2000).

    CAS 
    Article 

    Google Scholar 

  • 75.

    Gálvez, N. et al. A bioinspired approach to the synthesis of bimetallic CoNi nanoparticles. Inorg. Chem. 49, 1705–1711 (2010).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 76.

    Okuda, M., Iwahori, K., Yamashita, I. & Yoshimura, H. Fabrication of nickel and chromium nanoparticles using the protein cage of apoferritin. Biotechnol. Bioeng. 84, 187–194 (2003).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 77.

    Polanams, J., Ray, A. D. & Watt, R. K. Nanophase iron phosphate, iron arsenate, iron vanadate, and iron molybdate minerals synthesized within the protein cage of ferritin. Inorg. Chem. 44, 3203–3209 (2005).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 78.

    Shin, Y., Dohnalkova, A. & Lin, Y. Preparation of homogeneous gold–silver alloy nanoparticles using the apoferritin cavity as a nanoreactor. J. Phys. Chem. C 114, 5985–5989 (2010).

    CAS 
    Article 

    Google Scholar 

  • 79.

    Provaznik, I., Vrba, R. & Kizek, R. Electrochemical behaviour of apoferritin encapsulating of silver (I) ions and its application for treatment of Staphylococcus aureus. Int. J. Electrochem. Sci. 7, 6378–6395 (2012).

    Google Scholar 

  • 80.

    Sennuga, A., van Marwijk, J. & Whiteley, C. G. Multiple fold increase in activity of ferroxidase–apoferritin complex by silver and gold nanoparticles. Nanomedicine 9, 185–193 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 81.

    Turyanska, L. et al. The biocompatibility of apoferritin-encapsulated PbS quantum dots. Small 5, 1738–1741 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 82.

    Turyanska, L. et al. The differential effect of apoferritin-PbS nanocomposites on cell cycle progression in normal and cancerous cells. J. Mater. Chem. 22, 660–665 (2012).

    CAS 
    Article 

    Google Scholar 

  • 83.

    Hennequin, B. et al. Aqueous near-infrared fluorescent composites based on apoferritin-encapsulated PbS quantum dots. Adv. Mater. 20, 3592–3596 (2008).

    CAS 
    Article 

    Google Scholar 

  • 84.

    Du, D. et al. Nanoparticle-based immunosensor with apoferritin templated metallic phosphate label for quantification of phosphorylated acetylcholinesterase. Biosens. Bioelectron. 26, 3857–3863 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 85.

    Wu, H. et al. Apoferritin-templated yttrium phosphate nanoparticle conjugates for radioimmunotherapy of cancers. J. Nanosci. Nanotechnol. 8, 2316–2322 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 86.

    Wu, H., Engelhard, M. H., Wang, J., Fisher, D. R. & Lin, Y. Synthesis of lutetium phosphate–apoferritin core–shell nanoparticles for potential applications in radioimmunoimaging and radioimmunotherapy of cancers. J. Mater. Chem. 18, 1779–1783 (2008).

    CAS 
    Article 

    Google Scholar 

  • 87.

    Li, M., Viravaidya, C. & Mann, S. J. S. Polymer-mediated synthesis of ferritin-encapsulated inorganic nanoparticles. Small 3, 1477–1481 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 88.

    Zhang, W. et al. Prussian blue modified ferritin as peroxidase mimetics and its applications in biological detection. J. Nanosci. Nanotechnol. 13, 60–67 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 89.

    Hainfeld, J. F. Uranium-loaded apoferritin with antibodies attached: molecular design for uranium neutron-capture therapy. Proc. Natl Acad. Sci. USA 89, 11064–11068 (1992).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 90.

    Xing, R. et al. Characterization and cellular uptake of platinum anticancer drugs encapsulated in apoferritin. J. Inorg. Biochem. 103, 1039–1044 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 91.

    Zhang, Q. et al. Inlaying radiosensitizer onto the polypeptide shell of drug-loaded ferritin for imaging and combinational chemo-radiotherapy. Theranostics 9, 2779–2790 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 92.

    Kilic, M. A., Ozlu, E. & Calis, S. A novel protein-based anticancer drug encapsulating nanosphere: apoferritin-doxorubicin complex. J. Biomed. Nanotechnol. 8, 508–514 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 93.

    Cutrin, J. C., Crich, S. G., Burghelea, D., Dastru, W. & Aime, S. Curcumin/Gd loaded apoferritin: a novel “theranostic” agent to prevent hepatocellular damage in toxic induced acute hepatitis. Mol. Pharm. 10, 2079–2085 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 94.

    Lei, Y. et al. Targeted tumor delivery and controlled release of neuronal drugs with ferritin nanoparticles to regulate pancreatic cancer progression. J. Control. Release 232, 131–142 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Source link