Kim, B. Y. S., Rutka, J. T. & Chan, W. C. W. Nanomedicine. N. Engl. J. Med. 363, 2434–2443 (2010).
Google Scholar
Meel, R. et al. Smart cancer nanomedicine. Nat. Nanotechnol. 14, 1007–1017 (2019).
Google Scholar
Harmsen, S., Wall, M. A., Huang, R. & Kircher, M. F. Cancer imaging using surface-enhanced resonance Raman scattering nanoparticles. Nat. Protoc. 12, 1400–1414 (2017).
Google Scholar
Nam, J. et al. Cancer nanomedicine for combination cancer immunotherapy. Nat Rev. Mater. 4, 398–414 (2019).
Google Scholar
Sanhai, W. R., Sakamoto, J. H., Canady, R. & Ferrari, M. Seven challenges for nanomedicine. Nat. Nanotechnol. 3, 242–244 (2008).
Google Scholar
Shi, J., Kantoff, P. W., Wooster, R. & Farokhzad, O. C. Cancer nanomedicine: progress, challenges and opportunities. Nat. Rev. Cancer 17, 20–37 (2017).
Google Scholar
Docter, D. et al. Quantitative profiling of the protein coronas that form around nanoparticles. Nat. Protoc. 9, 2030–2044 (2014).
Google Scholar
Martin, J. D., Cabral, H., Stylianopoulos, T. & Jain, R. K. Improving cancer immunotherapy using nanomedicines: progress, opportunities and challenges. Nat. Rev. Clin. Oncol. 17, 251–266 (2020).
Google Scholar
Zhang, J. et al. Biochemistry of mammalian ferritins in the regulation of cellular iron homeostasis and oxidative responses. Sci. China Life Sci. 64, 352–362 (2021).
Google Scholar
Harrison, P. M. & Arosio, P. The ferritins: molecular properties, iron storage function and cellular regulation. Biochim. Biophys. Acta 1275, 161–203 (1996).
Google Scholar
Fan, K. et al. Magnetoferritin nanoparticles for targeting and visualizing tumour tissues. Nat. Nanotechnol. 7, 459–464 (2012).
Google Scholar
Li, L. et al. Binding and uptake of H-ferritin are mediated by human transferrin receptor-1. Proc. Natl Acad. Sci. USA 107, 3505–3510 (2010).
Google Scholar
Zhen, Z. et al. RGD-modified apoferritin nanoparticles for efficient drug delivery to tumors. ACS Nano 7, 4830–4837 (2013).
Google Scholar
Lin, X. et al. Hybrid ferritin nanoparticles as activatable probes for tumor imaging. Angew. Chem. Int. Ed. Engl. 50, 1569–1572 (2011).
Google Scholar
Jutz, G. N. et al. Ferritin: a versatile building block for bionanotechnology. Chem. Rev. 115, 1653–1701 (2015).
Google Scholar
Gao, F. et al. Hypoxia-tropic nanozymes as oxygen generators for tumor-favoring theranostics. Biomaterials. 230, 119635 (2020).
Google Scholar
Liang, M. et al. H-ferritin–nanocaged doxorubicin nanoparticles specifically target and kill tumors with a single-dose injection. Proc. Natl Acad. Sci. USA 111, 14900–14905 (2014).
Google Scholar
Wang, T. et al. Bioengineered magnetoferritin nanozymes for pathological identification of high-risk and ruptured atherosclerotic plaques in humans. Nano Res. 12, 863–868 (2019).
Google Scholar
Zhao, Y. et al. Bioengineered magnetoferritin nanoprobes for single-dose nuclear-magnetic resonance tumor imaging. ACS Nano 10, 4184–4191 (2016).
Google Scholar
Li, Y. et al. Nanoparticle ferritin-bound erastin and rapamycin: a nanodrug combining autophagy and ferroptosis for anticancer therapy. Biomater. Sci. 7, 3779–3787 (2019).
Google Scholar
Cheng, X. et al. TfR1 binding with H-ferritin nanocarrier achieves prognostic diagnosis and enhances the therapeutic efficacy in clinical gastric cancer. Cell Death Dis. 11, 1–13 (2020).
Google Scholar
Macone, A. et al. Ferritin nanovehicle for targeted delivery of cytochrome C to cancer cells. Sci. Rep. 9, 11749 (2019).
Google Scholar
Zhang, C., Zhang, X. & Zhao, G. Ferritin nanocage: a versatile nanocarrier utilized in the field of food, nutrition, and medicine. Nanomaterials (Basel) 10, 1894 (2020).
Google Scholar
Tetter, S. & Hilvert, D. Enzyme encapsulation by a ferritin cage. Angew. Chem. Int. Ed. Engl. 56, 14933–14936 (2017).
Google Scholar
Khoshnejad, M., Parhiz, H., Shuvaev, V. V., Dmochowski, I. J. & Muzykantov, V. R. Ferritin-based drug delivery systems: hybrid nanocarriers for vascular immunotargeting. J. Control. Release 282, 13–24 (2018).
Google Scholar
Li, L. et al. Ferritin-mediated siRNA delivery and gene silencing in human tumor and primary cells. Biomaterials 98, 143–151 (2016).
Google Scholar
Wang, Z. et al. Metal ion assisted interface re-engineering of a ferritin nanocage for enhanced biofunctions and cancer therapy. Nanoscale 10, 1135–1144 (2018).
Google Scholar
Uchida, M. et al. Targeting of cancer cells with ferrimagnetic ferritin cage nanoparticles. J. Am. Chem. Soc. 128, 16626–16633 (2006).
Google Scholar
Truffi, M. et al. Ferritin nanocages: a biological platform for drug delivery, imaging and theranostics in cancer. Pharmacol. Res. 107, 57–65 (2016).
Google Scholar
Wang, Z. et al. Functional ferritin nanoparticles for biomedical applications. Front. Chem. Sci. Eng. 11, 633–646 (2017).
Google Scholar
Wang, Z. et al. Biomineralization-inspired synthesis of copper sulfide–ferritin nanocages as cancer theranostics. ACS Nano 10, 3453–3460 (2016).
Google Scholar
Lin, X. et al. Chimeric ferritin nanocages for multiple function loading and multimodal imaging. Nano Lett. 11, 814–819 (2011).
Google Scholar
Chauhan, V. P. et al. Normalization of tumour blood vessels improves the delivery of nanomedicines in a size-dependent manner. Nat. Nanotechnol. 7, 383–388 (2012).
Google Scholar
Huang, X. et al. Protein nanocages that penetrate airway mucus and tumor tissue. Proc. Natl Acad. Sci. USA 114, E6595–E6602 (2017).
Google Scholar
Li, X. et al. Epidermal growth factor–ferritin H-chain protein nanoparticles for tumor active targeting. Small 8, 2505–2514 (2012).
Google Scholar
Bitonto, V. et al. L-ferritin: a theranostic agent of natural origin for MRI visualization and treatment of breast cancer. J. Control. Release 319, 300–310 (2020).
Google Scholar
Zhen, Z. et al. Ferritin nanocages to encapsulate and deliver photosensitizers for efficient photodynamic therapy against cancer. ACS Nano 7, 6988–6996 (2013).
Google Scholar
Kuruppu, A. I. et al. An apoferritin-based drug delivery system for the tyrosine kinase inhibitor gefitinib. Adv. Healthc. Mater. 4, 2816–2821 (2015).
Google Scholar
Zhou, H. et al. Mn-loaded apolactoferrin dots for in vivo MRI and NIR-II cancer imaging. J. Mater. Chem. C 7, 9448–9454 (2019).
Google Scholar
Fan, J. et al. Direct evidence for catalase and peroxidase activities of ferritin–platinum nanoparticles. Biomaterials 32, 1611–1618 (2011).
Google Scholar
Yang, Z. et al. Encapsulation of platinum anticancer drugs by apoferritin. Chem. Commun. (Camb) 33, 3453–3455 (2007).
Google Scholar
Kim, M. et al. pH-dependent structures of ferritin and apoferritin in solution: disassembly and reassembly. Biomacromolecules 12, 1629–1640 (2011).
Google Scholar
He, J., Fan, K. & Yan, X. Ferritin drug carrier (FDC) for tumor targeting therapy. J. Control Release 311, 288–300 (2019).
Google Scholar
Tesarova, B., Musilek, K., Rex, S. & Heger, Z. Taking advantage of cellular uptake of ferritin nanocages for targeted drug delivery. J. Control Release 325, 176–190 (2020).
Google Scholar
Liu, X. et al. Apoferritin–CeO 2 nano-truffle that has excellent artificial redox enzyme activity. Chem. Commun. (Camb) 48, 3155–3157 (2012).
Google Scholar
Iwahori, K., Yoshizawa, K., Muraoka, M. & Yamashita, I. Fabrication of ZnSe nanoparticles in the apoferritin cavity by designing a slow chemical reaction system. Inorg. Chem. 44, 6393–6400 (2005).
Google Scholar
Naito, M., Iwahori, K., Miura, A., Yamane, M. & Yamashita, I. Circularly polarized luminescent CdS quantum dots prepared in a protein nanocage. Angew. Chem. Int. Ed. Engl. 49, 7006–7009 (2010).
Google Scholar
Yamashita, I., Hayashi, J. & Hara, M. Bio-template synthesis of uniform CdSe nanoparticles using cage-shaped protein, apoferritin. Chem. Lett. 33, 1158–1159 (2004).
Google Scholar
Klem, M. T., Mosolf, J., Young, M. & Douglas, T. Photochemical mineralization of europium, titanium, and iron oxyhydroxide nanoparticles in the ferritin protein cage. Inorg. Chem. 47, 2237–2239 (2008).
Google Scholar
Hosein, H.-A., Strongin, D. R., Allen, M. & Douglas, T. Iron and cobalt oxide and metallic nanoparticles prepared from ferritin. Langmuir. 20, 10283–10287 (2004).
Google Scholar
Monti, D. M., Ferraro, G. & Merlino, A. Ferritin-based anticancer metallodrug delivery: crystallographic, analytical and cytotoxicity studies. Nanomedicine 20, 101997 (2019).
Google Scholar
Falvo, E. et al. Antibody–drug conjugates: targeting melanoma with cisplatin encapsulated in protein-cage nanoparticles based on human ferritin. Nanoscale 5, 12278–12285 (2013).
Google Scholar
Liu, W. et al. Target delivering paclitaxel by ferritin heavy chain nanocages for glioma treatment. J. Control. Release 323, 191–202 (2020).
Google Scholar
Liu, M., Zhu, Y., Wu, T., Cheng, J. & Liu, Y. Nanobody-ferritin conjugate for targeted photodynamic therapy. Chemistry 26, 7442–7450 (2020).
Google Scholar
Lee, E. J. et al. Engineered proteinticles for targeted delivery of siRNA to cancer cells. Adv. Funct. Mater. 25, 1279–1286 (2015).
Google Scholar
Wang, W. et al. Ferritin nanoparticle-based SpyTag/SpyCatcher-enabled click vaccine for tumor immunotherapy. Nanomedicine 16, 69–78 (2019).
Google Scholar
Falvo, E. et al. The presence of glutamate residues on the PAS sequence of the stimuli-sensitive nano-ferritin improves in vivo biodistribution and mitoxantrone encapsulation homogeneity. J. Control. Release 275, 177–185 (2018).
Google Scholar
Huang, P. et al. Dye-loaded ferritin nanocages for multimodal imaging and photothermal therapy. Adv. Mater. 26, 6401–6408 (2014).
Google Scholar
Chen, L. et al. Encapsulation of β-carotene within ferritin nanocages greatly increases its water-solubility and thermal stability. Food Chem. 149, 307–312 (2014).
Google Scholar
Huang, C. et al. Ultra-high loading of sinoporphyrin sodium in ferritin for single-wave motivated photothermal and photodynamic co-therapy. Biomater. Sci. 5, 1512–1516 (2017).
Google Scholar
Li, K. et al. Multifunctional ferritin cage nanostructures for fluorescence and MR imaging of tumor cells. Nanoscale 4, 188–193 (2012).
Google Scholar
Kim, H.-K. et al. Highly brain-permeable apoferritin nanocage with high dysprosium loading capacity as a new T2 contrast agent for ultra-high field magnetic resonance imaging. Biomaterials 243, 119939 (2020).
Google Scholar
Crich, S. G. et al. Magnetic resonance visualization of tumor angiogenesis by targeting neural cell adhesion molecules with the highly sensitive gadolinium-loaded apoferritin probe. Cancer Res. 66, 9196–9201 (2006).
Google Scholar
Cai, Y., Wang, Y., Zhang, T. & Pan, Y. Gadolinium-labeled ferritin nanoparticles as T 1 contrast agents for magnetic resonance imaging of tumors. ACS Appl. Nano Mater. 3, 8771–8783 (2020).
Google Scholar
Sánchez, P. et al. MRI relaxation properties of water-soluble apoferritin-encapsulated gadolinium oxide-hydroxide nanoparticles. Dalton Trans. 5, 800–804 (2009).
Google Scholar
Liang, M. et al. Bioengineered H-ferritin nanocages for quantitative imaging of vulnerable plaques in atherosclerosis. ACS Nano 12, 9300–9308 (2018).
Google Scholar
Jiang, B. et al. Biomineralization synthesis of the cobalt nanozyme in SP94-ferritin nanocages for prognostic diagnosis of hepatocellular carcinoma. ACS Appl. Mater. Interfaces 11, 9747–9755 (2019).
Google Scholar
Butts, C. A. et al. Directing noble metal ion chemistry within a designed ferritin protein. Biochemistry 47, 12729–12739 (2008).
Google Scholar
Iwahori, K., Takagi, R., Kishimoto, N. & Yamashita, I. A size controlled synthesis of CuS nano-particles in the protein cage, apoferritin. Mater. Lett. 65, 3245–3247 (2011).
Google Scholar
Gálvez, N., Sánchez, P. & Domínguez-Vera, J. M. Preparation of Cu and CuFe Prussian Blue derivative nanoparticles using the apoferritin cavity as nanoreactor. Dalton Trans. 15, 2492–2494 (2005).
Google Scholar
Gálvez, N. et al. Apoferritin-encapsulated Ni and Co superparamagnetic nanoparticles. J. Mater. Chem. 16, 2757–2761 (2006).
Google Scholar
Kashanian, S., Tarighat, F. & Rafipour, R. Biomimetic synthesis of cobalt nanoparticle using apoferritin and its application in electrochemical reaction to detect glucose. New Biotechnol. 25, S376 (2009).
Google Scholar
Kashanian, S., Tarighat, F. A., Rafipour, R. & Abbasi-Tarighat, M. Biomimetic synthesis and characterization of cobalt nanoparticles using apoferritin, and investigation of direct electron transfer of Co (NPs)–ferritin at modified glassy carbon electrode to design a novel nanobiosensor. Mol. Biol. Rep. 39, 8793–8802 (2012).
Google Scholar
Warne, B., Kasyutich, O. I., Mayes, E. L., Wiggins, J. A. L. & Wong, K. K. W. Self assembled nanoparticulate Co: Pt for data storage applications. IEEE Trans. Magn. 36, 3009–3011 (2000).
Google Scholar
Gálvez, N. et al. A bioinspired approach to the synthesis of bimetallic CoNi nanoparticles. Inorg. Chem. 49, 1705–1711 (2010).
Google Scholar
Okuda, M., Iwahori, K., Yamashita, I. & Yoshimura, H. Fabrication of nickel and chromium nanoparticles using the protein cage of apoferritin. Biotechnol. Bioeng. 84, 187–194 (2003).
Google Scholar
Polanams, J., Ray, A. D. & Watt, R. K. Nanophase iron phosphate, iron arsenate, iron vanadate, and iron molybdate minerals synthesized within the protein cage of ferritin. Inorg. Chem. 44, 3203–3209 (2005).
Google Scholar
Shin, Y., Dohnalkova, A. & Lin, Y. Preparation of homogeneous gold–silver alloy nanoparticles using the apoferritin cavity as a nanoreactor. J. Phys. Chem. C 114, 5985–5989 (2010).
Google Scholar
Provaznik, I., Vrba, R. & Kizek, R. Electrochemical behaviour of apoferritin encapsulating of silver (I) ions and its application for treatment of Staphylococcus aureus. Int. J. Electrochem. Sci. 7, 6378–6395 (2012).
Sennuga, A., van Marwijk, J. & Whiteley, C. G. Multiple fold increase in activity of ferroxidase–apoferritin complex by silver and gold nanoparticles. Nanomedicine 9, 185–193 (2013).
Google Scholar
Turyanska, L. et al. The biocompatibility of apoferritin-encapsulated PbS quantum dots. Small 5, 1738–1741 (2009).
Google Scholar
Turyanska, L. et al. The differential effect of apoferritin-PbS nanocomposites on cell cycle progression in normal and cancerous cells. J. Mater. Chem. 22, 660–665 (2012).
Google Scholar
Hennequin, B. et al. Aqueous near-infrared fluorescent composites based on apoferritin-encapsulated PbS quantum dots. Adv. Mater. 20, 3592–3596 (2008).
Google Scholar
Du, D. et al. Nanoparticle-based immunosensor with apoferritin templated metallic phosphate label for quantification of phosphorylated acetylcholinesterase. Biosens. Bioelectron. 26, 3857–3863 (2011).
Google Scholar
Wu, H. et al. Apoferritin-templated yttrium phosphate nanoparticle conjugates for radioimmunotherapy of cancers. J. Nanosci. Nanotechnol. 8, 2316–2322 (2008).
Google Scholar
Wu, H., Engelhard, M. H., Wang, J., Fisher, D. R. & Lin, Y. Synthesis of lutetium phosphate–apoferritin core–shell nanoparticles for potential applications in radioimmunoimaging and radioimmunotherapy of cancers. J. Mater. Chem. 18, 1779–1783 (2008).
Google Scholar
Li, M., Viravaidya, C. & Mann, S. J. S. Polymer-mediated synthesis of ferritin-encapsulated inorganic nanoparticles. Small 3, 1477–1481 (2007).
Google Scholar
Zhang, W. et al. Prussian blue modified ferritin as peroxidase mimetics and its applications in biological detection. J. Nanosci. Nanotechnol. 13, 60–67 (2013).
Google Scholar
Hainfeld, J. F. Uranium-loaded apoferritin with antibodies attached: molecular design for uranium neutron-capture therapy. Proc. Natl Acad. Sci. USA 89, 11064–11068 (1992).
Google Scholar
Xing, R. et al. Characterization and cellular uptake of platinum anticancer drugs encapsulated in apoferritin. J. Inorg. Biochem. 103, 1039–1044 (2009).
Google Scholar
Zhang, Q. et al. Inlaying radiosensitizer onto the polypeptide shell of drug-loaded ferritin for imaging and combinational chemo-radiotherapy. Theranostics 9, 2779–2790 (2019).
Google Scholar
Kilic, M. A., Ozlu, E. & Calis, S. A novel protein-based anticancer drug encapsulating nanosphere: apoferritin-doxorubicin complex. J. Biomed. Nanotechnol. 8, 508–514 (2012).
Google Scholar
Cutrin, J. C., Crich, S. G., Burghelea, D., Dastru, W. & Aime, S. Curcumin/Gd loaded apoferritin: a novel “theranostic” agent to prevent hepatocellular damage in toxic induced acute hepatitis. Mol. Pharm. 10, 2079–2085 (2013).
Google Scholar
Lei, Y. et al. Targeted tumor delivery and controlled release of neuronal drugs with ferritin nanoparticles to regulate pancreatic cancer progression. J. Control. Release 232, 131–142 (2016).
Google Scholar

