Preloader

Carbon-negative production of acetone and isopropanol by gas fermentation at industrial pilot scale

  • Aguado-Deblas, L. et al. Acetone prospect as an additive to allow the use of castor and sunflower oils as drop-in biofuels in diesel/acetone/vegetable oil triple blends for application in diesel engines. Molecules 25, 2935 (2020).

    CAS 
    PubMed Central 

    Google Scholar 

  • Elfasakhany, A. Performance and emissions analysis on using acetone–gasoline fuel blends in spark-ignition engine. Eng. Sci. Technol. Int. J. 19, 1224–1232 (2016).

    Google Scholar 

  • Anbarasan, P. et al. Integration of chemical catalysis with extractive fermentation to produce fuels. Nature 491, 235–239 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Ryan, C. F. et al. Synthesis of aviation fuel from bio-derived isophorone. Sustain. Energy Fuels 4, 1088–1092 (2020).

    CAS 

    Google Scholar 

  • Kratzel, A. et al. Inactivation of severe acute respiratory syndrome coronavirus 2 by WHO-recommended hand rub formulations and alcohols. Emerg. Infect. Dis. 26, 1592–1595 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wernet, G. et al. The ecoinvent database version 3 (part I): overview and methodology. Int. J. Life Cycle Assess. 21, 1218–1230 (2016).

    Google Scholar 

  • Jones, D. T. & Woods, D. R. Acetone–butanol fermentation revisited. Microbiol. Rev. 50, 484–524 (1986).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ismaiel, A. A., Zhu, C. X., Colby, G. D. & Chen, J. S. Purification and characterization of a primary–secondary alcohol dehydrogenase from two strains of Clostridium beijerinckii. J. Bacteriol. 175, 5097–5105 (1993).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hanai, T., Atsumi, S. & Liao, J. C. Engineered synthetic pathway for isopropanol production in Escherichia coli. Appl. Environ. Microbiol. 73, 7814–7818 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • May, A. et al. A modified pathway for the production of acetone in Escherichia coli. Metab. Eng. 15, 218–225 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Liang, L. et al. CRISPR EnAbled Trackable genome Engineering for isopropanol production in Escherichia coli. Metab. Eng. 41, 1–10 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Soma, Y., Yamaji, T., Matsuda, F. & Hanai, T. Synthetic metabolic bypass for a metabolic toggle switch enhances acetyl-CoA supply for isopropanol production by Escherichia coli. J. Biosci. Bioeng. 123, 625–633 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Jojima, T., Inui, M. & Yukawa, H. Production of isopropanol by metabolically engineered Escherichia coli. Appl. Microbiol. Biotechnol. 77, 1219–1224 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • Jones, S. W. et al. CO2 fixation by anaerobic non-photosynthetic mixotrophy for improved carbon conversion. Nat. Commun. 7, 12800 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Simpson, S. D. & Köpke, M. Pollution to products: recycling of ‘above ground’ carbon by gas fermentation. Curr. Opin. Biotechnol. 65, 180–189 (2020).

    PubMed 

    Google Scholar 

  • Marcellin, E. et al. Low carbon fuels and commodity chemicals from waste gases—systematic approach to understand energy metabolism in a model acetogen. Green Chem. 18, 3020 (2016).

    CAS 

    Google Scholar 

  • Kato, J. et al. Metabolic engineering of Moorella thermoacetica for thermophilic bioconversion of gaseous substrates to a volatile chemical. AMB Express 11, 59 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hoffmeister, S. et al. Acetone production with metabolically engineered strains of Acetobacterium woodii. Metab. Eng. 36, 37–47 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Banerjee, A., Leang, C., Ueki, T., Nevin, K. P. & Lovley, D. R. A lactose-inducible system for metabolic engineering of Clostridium ljungdahlii. Appl. Environ. Microbiol. 80, 2410–2416 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Garrigues, L., Maignien, L., Lombard, E., Singh, J. & Guillouet, S. E. Isopropanol production from carbon dioxide in Cupriavidus necator in a pressurized bioreactor. N. Biotechnol. 56, 16–20 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Lee, H. J., Son, J., Sim, S. J. & Woo, H. M. Metabolic rewiring of synthetic pyruvate dehydrogenase bypasses for acetone production in cyanobacteria. Plant Biotechnol. J. 18, 1860–1868 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Torella, J. P. et al. Efficient solar-to-fuels production from a hybrid microbial-water-splitting catalyst system. Proc. Natl Acad. Sci. USA 112, 2337–2342 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hirokawa, Y., Dempo, Y., Fukusaki, E. & Hanai, T. Metabolic engineering for isopropanol production by an engineered cyanobacterium, Synechococcus elongatus PCC 7942, under photosynthetic conditions. J. Biosci. Bioeng. 123, 39–45 (2016).

    PubMed 

    Google Scholar 

  • Zhou, J., Zhang, H., Zhang, Y., Li, Y. & Ma, Y. Designing and creating a modularized synthetic pathway in cyanobacterium Synechocystis enables production of acetone from carbon dioxide. Metab. Eng. 14, 394–400 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Claassens, N. J., Cotton, C. A. R., Kopljar, D. & Bar-Even, A. Making quantitative sense of electromicrobial production. Nat. Catal. 2, 437–447 (2019).

    CAS 

    Google Scholar 

  • Fast, A. G. & Papoutsakis, E. T. Stoichiometric and energetic analyses of non-photosynthetic CO2-fixation pathways to support synthetic biology strategies for production of fuels and chemicals. Curr. Opin. Chem. Eng. 1, 380–395 (2012).

    Google Scholar 

  • Bar-Even, A., Noor, E. & Milo, R. A survey of carbon fixation pathways through a quantitative lens. J. Exp. Bot. 63, 2325–2342 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Köpke, M. et al. Clostridium ljungdahlii represents a microbial production platform based on syngas. Proc. Natl Acad. Sci. USA 107, 13087–13092 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Fackler, N. et al. Stepping on the gas to a circular economy: accelerating development of carbon-negative chemical production from gas fermentation. Ann. Rev. Chem. Biomol. Eng. 12, 439–470 (2021).

    Google Scholar 

  • Jin, S. et al. Synthetic biology on acetogenic bacteria for highly efficient conversion of C1 gases to biochemicals. Int. J. Mol. Sci. 21, 7639 (2020).

    CAS 
    PubMed Central 

    Google Scholar 

  • Takors, R. et al. Using gas mixtures of CO, CO2 and H2 as microbial substrates: the do’s and don’ts of successful technology transfer from laboratory to production scale. Microb. Biotechnol. 11, 606–625 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jones, D. T. Applied acetone–butonal fermentation. In: Clostridia: Biotechnology and Medical Applications (eds Dürre, P. & Bahl, H.) 125–168 (Wiley, 2001).

  • Jones, D. T. & Keis, S. Origins and relationships of industrial solvent-producing clostridial strains. FEMS Microbiol. Rev. 17, 223–232 (1995).

    CAS 

    Google Scholar 

  • Karim, A. S. et al. In vitro prototyping and rapid optimization of biosynthetic enzymes for cellular design. Nat. Chem. Biol. 16, 912–919 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Krüger, A. et al. Development of a clostridia-based cell-free system for prototyping genetic parts and metabolic pathways. Metab. Eng. 62, 95–105 (2020).

    PubMed 

    Google Scholar 

  • Heap, J. T., Pennington, O. J., Cartman, S. T. & Minton, N. P. A modular system for Clostridium shuttle plasmids. J. Microbiol. Methods 78, 79–85 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • Maddock, D. J., Patrick, W. M. & Gerth, M. L. Substitutions at the cofactor phosphate-binding site of a clostridial alcohol dehydrogenase lead to unexpected changes in substrate specificity. Protein Eng. Des. Sel. 28, 251–258 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Köpke, M. et al. Reconstruction of an acetogenic 2,3-butanediol pathway involving a novel NADPH-dependent primary–secondary alcohol dehydrogenase. Appl. Environ. Microbiol. 80, 3394–3403 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Valgepea, K. et al. H2 drives metabolic rearrangements in gas-fermenting Clostridium autoethanogenum. Biotechnol. Biofuels 11, 55 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • de Souza Pinto Lemgruber, R. et al. Systems-level engineering and characterisation of Clostridium autoethanogenum through heterologous production of poly-3-hydroxybutyrate (PHB). Metab. Eng. 53, 14–23 (2019).

    PubMed 

    Google Scholar 

  • Maia, P., Rocha, I. & Rocha, M. Identification of robust strain designs via tandem pFBA/LMOMA phenotype prediction. In: GECCO 2017: Proceedings of the Genetic and Evolutionary Computation Conference Companion 1661–1668 (Association for Computing Machinery, 2017).

  • Zitzler, E., Laumanns, M. & Thiele, L. SPEA2: improving the Strength Pareto Evolutionary Algorithm. In: Proceedings of the Fifth Conference on Evolutionary Methods for Design 95–100 (Association for Computing Machinery, 2001).

  • Takanashi, M. & Saito, T. Characterization of two 3-hydroxybutyrate dehydrogenases in poly(3-hydroxybutyrate)-degradable bacterium, Ralstonia pickettii T1. J. Biosci. Bioeng. 101, 501–507 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • Segawa, M., Wen, C., Orita, I., Nakamura, S. & Fukui, T. Two NADH-dependent (S)-3-hydroxyacyl-CoA dehydrogenases from polyhydroxyalkanoate-producing Ralstonia eutropha. J. Biosci. Bioeng. 127, 294–300 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Tan, Y., Liu, Z.-Y., Liu, Z. & Li, F.-L. Characterization of an acetoin reductase/2,3-butanediol dehydrogenase from Clostridium ljungdahlii DSM 13528. Enzyme Microb. Technol. 79–80, 1–7 (2015).

    PubMed 

    Google Scholar 

  • Kim, J., Chang, J. H., Kim, E. J. & Kim, K. J. Crystal structure of (R)-3-hydroxybutyryl-CoA dehydrogenase PhaB from Ralstonia eutropha. Biochem. Biophys. Res. Commun. 443, 783–788 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Boynton, Z. L., Bennet, G. N. & Rudolph, F. B. Cloning, sequencing, and expression of clustered genes encoding beta-hydroxybutyryl-coenzyme A (CoA) dehydrogenase, crotonase, and butyryl-CoA dehydrogenase from Clostridium acetobutylicum ATCC 824. J. Bacteriol. 178, 3015–3024 (1996).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vick, J. E. et al. Escherichia coli enoyl-acyl carrier protein reductase (FabI) supports efficient operation of a functional reversal of the β-oxidation cycle. Appl. Environ. Microbiol. 81, 1406–1416 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Liew, F. et al. Metabolic engineering of Clostridium autoethanogenum for selective alcohol production. Metab. Eng. 40, 104–114 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mahamkali, V. et al. Redox controls metabolic robustness in the gas-fermenting acetogen Clostridium autoethanogenum. Proc. Natl Acad. Sci. USA 117, 13168–13175 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Greene, J., Daniell, J., Köpke, M., Broadbelt, L. & Tyo, K. E. J. Kinetic ensemble model of gas fermenting Clostridium autoethanogenum for improved ethanol production. Biochem. Eng. J. 148, 46–56 (2019).

    CAS 

    Google Scholar 

  • Wehrs, M. et al. Engineering robust production microbes for large-scale cultivation. Trends Microbiol. 27, 524–537 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Hoff, B. et al. Unlocking nature’s biosynthetic power—metabolic engineering for the fermentative production of chemicals. Angew. Chem. Int. Ed. Engl. 60, 2258–2278 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Nielsen, J. & Keasling, J. D. Engineering cellular metabolism. Cell 164, 1185–1197 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Crater, J. S. & Lievense, J. C. Scale-up of industrial microbial processes. FEMS Microbiol. Lett. 365, 138 (2018).

    Google Scholar 

  • Bertsch, J. & Müller, V. Bioenergetic constraints for conversion of syngas to biofuels in acetogenic bacteria. Biotechnol. Bioeng. 8, 210 (2015).

    Google Scholar 

  • Schuchmann, K. & Müller, V. Autotrophy at the thermodynamic limit of life: a model for energy conservation in acetogenic bacteria. Nat. Rev. Microbiol. 12, 809–821 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Erb, T. J. Back to the future: why we need enzymology to build a synthetic metabolism of the future. Beilstein J. Org. Chem. 15, 551–557 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Diether, M., Nikolaev, Y., Allain, F. H. & Sauer, U. Systematic mapping of protein-metabolite interactions in central metabolism of Escherichia coli. Mol. Syst. Biol. 15, e9008 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Kim, H. M., Chae, T. U., Choi, S. Y., Kim, W. J. & Lee, S. Y. Engineering of an oleaginous bacterium for the production of fatty acids and fuels. Nat. Chem. Biol. 15, 721–729 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Amin, S. A., Chavez, E., Porokhin, V., Nair, N. U. & Hassoun, S. Towards creating an extended metabolic model (EMM) for E. coli using enzyme promiscuity prediction and metabolomics data. Microb. Cell Fact. 18, 109 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Vögeli, B. et al. Archaeal acetoacetyl-CoA thiolase/HMG-CoA synthase complex channels the intermediate via a fused CoA-binding site. Proc. Natl Acad. Sci. USA 115, 3380–3385 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, I. M. A. et al. The IMG/M data management and analysis system v.6.0: new tools and advanced capabilities. Nucleic Acids Res. 49, D751–D763 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Larkin, M. A. et al. Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947–2948 (2007).

    CAS 

    Google Scholar 

  • Nguyen, L., Schmidt, H. A., Von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A. & Jermiin, L. S. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 47, 256–259 (2019).

    Google Scholar 

  • Fero, M. J., Craft, J. K., Trang, V. & Hillson, N. J. Combinatorial-hierarchical DNA library design using the TeselaGen DESIGN Module with j5. Methods Mol. Biol. 2205, 19–47 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Liew, F. M. et al. Gas fermentation—a flexible platform for commercial scale production of low-carbon-fuels and chemicals from waste and renewable feedstocks. Front. Microbiol. 7, 694 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Valgepea, K. et al. Arginine deiminase pathway provides ATP and boosts growth of the gas-fermenting acetogen Clostridium autoethanogenum. Metab. Eng. 41, 202–211 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Ebrahim, A., Lerman, J. A., Palsson, B. O. & Hyduke, D. R. COBRApy: COnstraints-Based Reconstruction and Analysis for Python. BMC Syst. Biol. 7, 74 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Gonçalves, E., Pereira, R., Rocha, I. & Rocha, M. Optimization approaches for the in silico discovery of optimal targets for gene over/underexpression. J. Comput. Biol. 19, 102–114 (2012).

    PubMed 

    Google Scholar 

  • Kwon, Y. C. & Jewett, M. C. High-throughput preparation methods of crude extract for robust cell-free protein synthesis. Sci. Rep. 5, 8663 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jewett, M. C. & Swartz, J. R. Mimicking the Escherichia coli cytoplasmic environment activates long-lived and efficient cell-free protein synthesis. Biotechnol. Bioeng. 86, 19–26 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • Jewett, M. C., Calhoun, K. A., Voloshin, A., Wuu, J. J. & Swartz, J. R. An integrated cell-free metabolic platform for protein production and synthetic biology. Mol. Syst. Biol. 4, 220 (2008).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Karim, A. S., Rasor, B. J. & Jewett, M. C. Enhancing control of cell-free metabolism through pH modulation. Synth. Biol. 5, ysz027 (2020).

    CAS 

    Google Scholar 

  • Batth, T. S. et al. Protein aggregation capture on microparticles enables multipurpose proteomics sample preparation. Mol. Cell. Proteomics 18, 1027–1035 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Walker, C., Ryu, S., Giannone, R. J., Garcia, S. & Trinh, C. T. Understanding and eliminating the detrimental effect of thiamine deficiency on the oleaginous yeast Yarrowia lipolytica. Appl. Environ. Microbiol 86, e02299–19 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Taverner, T. et al. DanteR: an extensible R-based tool for quantitative analysis of -omics data. Bioinformatics 28, 2404–2406 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tyanova, S. et al. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods 13, 731–740 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Source link