Massari, L. et al. Biophysical stimulation of bone and cartilage: state of the art and future perspectives. Int. Orthop. (SICOT) 43, 539–551 (2019).
Przekora, A. Current trends in fabrication of biomaterials for bone and cartilage regeneration: materials modifications and biophysical stimulations. Int. J. Mol. Sci. 20, 435 (2019).
Soares dos Santos, M. P. et al. Capacitive technologies for highly controlled and personalized electrical stimulation by implantable biomedical systems. Sci. Rep. 9, 1–20 (2019).
Google Scholar
Chen, C., Bai, X., Ding, Y. & Lee, I.-S. Electrical stimulation as a novel tool for regulating cell behavior in tissue engineering. Biomater. Res. 23, 25 (2019).
Google Scholar
Iandolo, D. et al. Development and characterization of organic electronic scaffolds for bone tissue engineering. Adv. Healthc. Mater. 5, 1505–1512 (2016).
Google Scholar
Soares dos Santos, M. P. et al. New cosurface capacitive stimulators for the development of active osseointegrative implantable devices. Sci. Rep. 6, 30231 (2016).
Google Scholar
Soares dos Santos, M. P., Ferreira, J. A. F., Ramos, A. & Simões, J. A. O. Active orthopaedic implants: towards optimality. J. Franklin Inst. 352, 813–834 (2015).
Hunter, D. J., March, L. & Chew, M. Osteoarthritis in 2020 and beyond: a Lancet Commission. Lancet 396, 1711–1712 (2020).
Google Scholar
Ferguson, R. J. et al. Hip replacement. Lancet 392, 1662–1671 (2018).
Google Scholar
Price, A. J. et al. Knee replacement. Lancet 392, 1672–1682 (2018).
Google Scholar
Labek, G., Thaler, M., Janda, W., Agreiter, M. & Stöckl, B. Revision rates after total joint replacement: cumulative results from worldwide joint register datasets. J. Bone Jt. Surg. Br. 93-B, 293–297 (2011).
McGrory, B. J., Etkin, C. D. & Lewallen, D. G. Comparing contemporary revision burden among hip and knee joint replacement registries. Arthroplasty Today 2, 83–86 (2016).
Google Scholar
Soares dos Santos, M. P. et al. Instrumented hip joint replacements, femoral replacements and femoral fracture stabilizers. Expert Rev. Med. Dev. 11, 617–635 (2014).
Google Scholar
Kurtz, S. M. et al. Future young patient demand for primary and revision joint replacement: national projections from 2010 to 2030. Clin. Orthop. Relat. Res. 467, 2606–2612 (2009).
Google Scholar
Kurtz, S. M. et al. International survey of primary and revision total knee replacement. Int. Orthop. (SICOT) 35, 1783–1789 (2011).
Pabinger, C. & Geissler, A. Utilization rates of hip arthroplasty in OECD countries. Osteoarthr. Cartil. 22, 734–741 (2014).
Google Scholar
Losina, E. & Katz, J. N. Total knee arthroplasty on the rise in younger patients: are we sure that past performance will guarantee future success? Arthritis Rheumat. 64, 339–341 (2012).
Google Scholar
Abdel, M. P., Roth, P., von, Harmsen, W. S. & Berry, D. J. What is the lifetime risk of revision for patients undergoing total hip arthroplasty?: A 40-year observational study of patients treated with the Charnley cemented total hip arthroplasty. Bone Jt J. 98-B, 1436–1440 (2016).
Google Scholar
Troelsen, A., Malchau, E., Sillesen, N. & Malchau, H. A review of current fixation use and registry outcomes in total hip arthroplasty: the uncemented paradox. Clin. Orthop. Relat. Res. 471, 2052–2059 (2013).
Google Scholar
Asokan, A. et al. Cementless knee arthroplasty: a review of recent performance. Bone Jt. Open 2, 48–57 (2021).
Google Scholar
Sumner, D. R. Long-term implant fixation and stress-shielding in total hip replacement. J. Biomech. 48, 797–800 (2015).
Google Scholar
Goriainov, V., Cook, R. M., Latham, J. G., Dunlop, D. & Oreffo, R. O. C. Bone and metal: an orthopaedic perspective on osseointegration of metals. Acta Biomater. 10, 4043–4057 (2014).
Google Scholar
Cachão, J. H. et al. Altering the course of technologies to monitor loosening states of endoprosthetic implants. Sensors 20, 104 (2019).
Google Scholar
Torrão, J. N., dos Santos, M. P. S. & Ferreira, J. A. Instrumented knee joint implants: innovations and promising concepts. Expert Rev. Med. Dev. 12, 571–584 (2015).
Coelho, P. G. et al. Nanometer-scale features on micrometer-scale surface texturing: a bone histological, gene expression, and nanomechanical study. Bone 65, 25–32 (2014).
Google Scholar
Benum, P. & Aamodt, A. Uncemented custom femoral components in hip arthroplasty: a prospective clinical study of 191 hips followed for at least 7 years. Acta Orthopaed. 81, 427–435 (2010).
Ryan, G., Pandit, A. & Apatsidis, D. Fabrication methods of porous metals for use in orthopaedic applications. Biomaterials 27, 2651–2670 (2006).
Google Scholar
Jing, D. et al. Pulsed electromagnetic fields promote osteogenesis and osseointegration of porous titanium implants in bone defect repair through a Wnt/β-catenin signaling-associated mechanism. Sci. Rep. 6, 32045 (2016).
Google Scholar
Simões, J. A. & Marques, A. T. Design of a composite hip femoral prosthesis. Mater. Des. 26, 391–401 (2005).
Goodman, S. B., Yao, Z., Keeney, M. & Yang, F. The future of biologic coatings for orthopaedic implants. Biomaterials 34, 3174–3183 (2013).
Google Scholar
Navarro, M., Michiardi, A., Castaño, O. & Planell, J. A. Biomaterials in orthopaedics. J. R. Soc. Interface 5, 1137–1158 (2008).
Google Scholar
Zhang, B., Myers, D., Wallace, G., Brandt, M. & Choong, P. Bioactive coatings for orthopaedic implants—recent trends in development of implant coatings. Int. J. Mol. Sci. 15, 11878–11921 (2014).
Google Scholar
Alves, N. M., Leonor, I. B., Azevedo, H. S., Reis, R. L. & Mano, J. F. Designing biomaterials based on biomineralization of bone. J. Mater. Chem. 20, 2911 (2010).
Google Scholar
Kannan, S. et al. Synthesis, mechanical and biological characterization of ionic doped carbonated hydroxyapatite/β-tricalcium phosphate mixtures. Acta Biomater. 7, 1835–1843 (2011).
Google Scholar
Bernardo, R. et al. Novel magnetic stimulation methodology for low-current implantable medical devices. Med. Eng. Phys. 73, 77–84 (2019).
Google Scholar
Soares dos Santos, M. P. et al. Towards an effective sensing technology to monitor micro-scale interface loosening of bioelectronic implants. Sci. Rep. 11, 3449 (2021).
Google Scholar
Bergmann, G., Graichen, F. & Rohlmann, A. Hip joint forces in sheep. J. Biomech. 32, 769–777 (1999).
Google Scholar
Graichen, F., Bergmann, G. & Rohlmann, A. Hip endoprosthesis for in vivo measurement of joint force and temperature. J. Biomech. 32, 1113–1117 (1999).
Google Scholar
Damm, P., Graichen, F., Rohlmann, A., Bender, A. & Bergmann, G. Total hip joint prosthesis for in vivo measurement of forces and moments. Med. Eng. Phys. 32, 95–100 (2010).
Google Scholar
Bergmann, G. et al. High-tech hip implant for wireless temperature measurements in vivo. PLoS ONE 7, e43489 (2012).
Google Scholar
Soares dos Santos, M. P. et al. Instrumented hip implants: electric supply systems. J. Biomech. 46, 2561–2571 (2013).
Google Scholar
Fukada, E. & Yasuda, I. On the piezoelectric effect of bone. J. Phys. Soc. Jpn 12, 1158–1162 (1957).
Griffin, M. & Bayat, A. Electrical stimulation in bone healing: critical analysis by evaluating levels of evidence. Eplasty 11, e34 (2011).
Balint, R., Cassidy, N. J. & Cartmell, S. H. Electrical stimulation: a novel tool for tissue engineering. Tissue Eng. Part B Rev. 19, 48–57 (2013).
Google Scholar
Hartig, M., Joos, U. & Wiesmann, H. P. Capacitively coupled electric fields accelerate proliferation of osteoblast-like primary cells and increase bone extracellular matrix formation in vitro. Eur. Biophys. J. 29, 499–506 (2000).
Google Scholar
Wiesmann, H., Hartig, M., Stratmann, U., Meyer, U. & Joos, U. Electrical stimulation influences mineral formation of osteoblast-like cells in vitro. Biochim. Biophys. Acta 1538, 28–37 (2001).
Google Scholar
Zhuang, H. et al. Electrical stimulation induces the level of TGF-β1 mRNA in osteoblastic cells by a mechanism involving calcium/calmodulin pathway. Biochem. Biophys. Res. Commun. 237, 225–229 (1997).
Google Scholar
Wang, Z., Clark, C. C. & Brighton, C. T. Up-regulation of bone morphogenetic proteins in cultured murine bone cells with use of specific electric fields. J. Bone Jt Surg. 88, 1053–1065 (2006).
Clark, C. C., Wang, W. & Brighton, C. T. Up-regulation of expression of selected genes in human bone cells with specific capacitively coupled electric fields: electrical stimulation of human osteoblasts. J. Orthop. Res. 32, 894–903 (2014).
Google Scholar
Brighton, C. T. & Pollack, S. R. Treatment of nonunion of the tibia with a capacitively coupled electrical field. J. Trauma 24, 153–155 (1984).
Google Scholar
Impagliazzo, A., Mattei, A., Spurio Pompili, G. F., Setti, S. & Cadossi, R. Treatment of nonunited fractures with capacitively coupled electric field. J. Orthop. Traumatol. 7, 16–22 (2006).
Piazzolla, A. et al. Capacitive coupling electric fields in the treatment of vertebral compression fractures. J. Biol. Regul. Homeost. Agents 29, 637–646 (2015).
Google Scholar
Massari, L. et al. Does capacitively coupled electric fields stimulation improve clinical outcomes after instrumented spinal fusion? A multicentered randomized, prospective, double-blind, placebo-controlled trial. Int. J. Spine Surg. 14, 936–943 (2020).
Google Scholar
Min, Y. et al. Self-doped polyaniline-based interdigitated electrodes for electrical stimulation of osteoblast cell lines. Synth. Metals 198, 308–313 (2014).
Google Scholar
Pina, S. et al. Biological responses of brushite-forming Zn- and ZnSr- substituted beta-tricalcium phosphate bone cements. Eur. Cell Mater. 20, 162–177 (2010).
Google Scholar
Pina, S. et al. In vitro performance assessment of new brushite-forming Zn- and ZnSr-substituted β-TCP bone cements. J. Biomed. Mater. Res. 94B, 414–420 (2010).
Google Scholar
Torres, P. M. C. et al. Effects of Mn-doping on the structure and biological properties of β-tricalcium phosphate. J. Inorg. Biochem. 136, 57–66 (2014).
Google Scholar
Torres, P. M. C. et al. Injectable MnSr-doped brushite bone cements with improved biological performance. J. Mater. Chem. B 5, 2775–2787 (2017).
Google Scholar
Hasegawa, T. Ultrastructure and biological function of matrix vesicles in bone mineralization. Histochem. Cell Biol. 149, 289–304 (2018).
Google Scholar
Zhang, J., Neoh, K. G. & Kang, E. Electrical stimulation of adipose‐derived mesenchymal stem cells and endothelial cells co‐cultured in a conductive scaffold for potential orthopaedic applications. J Tissue Eng Regen Med 12, 878–889 (2018).
Google Scholar
Xavier, M., de Andrés, M. C., Spencer, D., Oreffo, R. O. C. & Morgan, H. Size and dielectric properties of skeletal stem cells change critically after enrichment and expansion from human bone marrow: consequences for microfluidic cell sorting. J. R. Soc. Interface 14, 20170233 (2017).
Google Scholar
Dorozhkin, S. V. & Epple, M. Biological and medical significance of calcium phosphates. Angew Chem. Int. Ed. Engl. 41, 3130–3146 (2002).
Google Scholar
McGilvray, K. C. et al. Implantable microelectromechanical sensors for diagnostic monitoring and post-surgical prediction of bone fracture healing: implantable microelectromechanical sensors for diagnostic monitoring. J. Orthop. Res. 33, 1439–1446 (2015).
Google Scholar
Rutkovskiy, A., Stensløkken, K.-O. & Vaage, I. J. Osteoblast differentiation at a glance. Med. Sci. Monit. Basic Res. 22, 95–106 (2016).
Google Scholar
Marote, A. et al. A proteomic analysis of the interactions between poly(L-lactic acid) nanofibers and SH-SY5Y neuronal-like cells. AIMS Mol. Sci. 3, 661–682 (2016).
Google Scholar
da Rocha, J. F., da Cruz e Silva, O. A. B. & Vieira, S. I. Analysis of the amyloid precursor protein role in neuritogenesis reveals a biphasic SH-SY5Y neuronal cell differentiation model. J. Neurochem. 134, 288–301 (2015).
Google Scholar
Leppik, L., Oliveira, K. M. C., Bhavsar, M. B. & Barker, J. H. Electrical stimulation in bone tissue engineering treatments. Eur. J. Trauma Emerg. Surg. 46, 231–244 (2020).
Google Scholar
Bjørge, I. M., Kim, S. Y., Mano, J. F., Kalionis, B. & Chrzanowski, W. Extracellular vesicles, exosomes and shedding vesicles in regenerative medicinea new paradigm for tissue repair. Biomater. Sci. 6, 60–78 (2018).
Rosset, E. M. & Bradshaw, A. D. SPARC/osteonectin in mineralized tissue. Matrix Biol. 52–54, 78–87 (2016).
Google Scholar
Wrobel, E., Leszczynska, J. & Brzoska, E. The characteristics of human bone-derived cells (HBDCS) during osteogenesis in vitro. Cell. Mol. Biol. Lett. 21, 26 (2016).
Google Scholar
Shafiee, A. et al. A comparison between osteogenic differentiation of human unrestricted somatic stem cells and mesenchymal stem cells from bone marrow and adipose tissue. Biotechnol. Lett. 33, 1257–1264 (2011).
Google Scholar
Simon, P. et al. First evidence of octacalcium phosphate@osteocalcin nanocomplex as skeletal bone component directing collagen triple–helix nanofibril mineralization. Sci. Rep. 8, 13696 (2018).
Google Scholar
Ivanovski, S., Hamlet, S., Retzepi, M., Wall, I. & Donos, N. Transcriptional profiling of ‘guided bone regeneration’ in a critical-size calvarial defect. Clin. Oral Implants Res. 22, 382–389 (2011).
Google Scholar
Wu, Y., Xiao, J., Wu, L., Tian, W. & Liu, L. Expression of glutamyl aminopeptidase by osteogenic induction in rat bone marrow stromal cells. Cell Biol. Int. 32, 748–753 (2008).
Google Scholar
Nilsen, R. & Magnusson, B. C. Enzyme histochemical studies of induced heterotopic cartilage and bone formation in guinea pigs with special reference to acid phosphatase. Scand. J. Dent. Res. 89, 491–498 (1981).
Google Scholar
Suzuki, M. & Mizuno, A. A novel human Cl(-) channel family related to Drosophila flightless locus. J. Biol. Chem. 279, 22461–22468 (2004).
Google Scholar
Li, L. et al. Rare copy number variants in the genome of Chinese female children and adolescents with Turner syndrome. Biosci. Rep. 39, BSR20181305 (2019).
Hamm, A. et al. Frequent expression loss of Inter-alpha-trypsin inhibitor heavy chain (ITIH) genes in multiple human solid tumors: a systematic expression analysis. BMC Cancer 8, 25 (2008).
Google Scholar
Simunovic, F. et al. Increased differentiation and production of extracellular matrix components of primary human osteoblasts after cocultivation with endothelial cells: a quantitative proteomics approach. J. Cell. Biochem. 120, 396–404 (2019).
Google Scholar
Pellinen, T. et al. Small GTPase Rab21 regulates cell adhesion and controls endosomal traffic of beta1-integrins. J. Cell Biol. 173, 767–780 (2006).
Google Scholar
Yang, C.-W. et al. An integrative transcriptomic analysis for identifying novel target genes corresponding to severity spectrum in spinal muscular atrophy. PLoS ONE 11, e0157426 (2016).
Google Scholar
Yue, R., Shen, B. & Morrison, S. J. Clec11a/osteolectin is an osteogenic growth factor that promotes the maintenance of the adult skeleton. Elife 5, e18782 (2016).
Hu, Y. et al. Human umbilical cord mesenchymal stromal cells-derived extracellular vesicles exert potent bone protective effects by CLEC11A-mediated regulation of bone metabolism. Theranostics 10, 2293–2308 (2020).
Google Scholar
Lee, E.-J. et al. PTX3 stimulates osteoclastogenesis by increasing osteoblast RANKL production. J. Cell. Physiol. 229, 1744–1752 (2014).
Google Scholar
Zhang, J. et al. Neurotrophin-3 acts on the endothelial-mesenchymal transition of heterotopic ossification in rats. J. Cell. Mol. Med. 23, 2595–2609 (2019).
Google Scholar
Park, K.-R. et al. Peroxiredoxin 6 inhibits osteogenic differentiation and bone formation through human dental pulp stem cells and induces delayed bone development. Antioxid. Redox Signal. 30, 1969–1982 (2019).
Google Scholar
Hoshino, Y. et al. Smad4 decreases the population of pancreatic cancer-initiating cells through transcriptional repression of ALDH1A1. Am. J. Pathol. 185, 1457–1470 (2015).
Google Scholar
Nallamshetty, S. et al. Deficiency of retinaldehyde dehydrogenase 1 induces BMP2 and increases bone mass in vivo. PLoS ONE 8, e71307 (2013).
Google Scholar
Takashi, M. et al. Differential gene expression of collagen-binding small leucine-rich proteoglycans and lysyl hydroxylases, during mineralization by MC3T3-E1 cells cultured on titanium implant material. Eur. J. Oral Sci. 113, 225–231 (2005).
Google Scholar
Sirivisoot, S., Pareta, R. A. & Webster, T. J. A conductive nanostructured polymer electrodeposited on titanium as a controllable, local drug delivery platform. J. Biomed. Mater. Res. 99A, 586–597 (2011).
Google Scholar
Tsimbouri, P. M. et al. Stimulation of 3D osteogenesis by mesenchymal stem cells using a nanovibrational bioreactor. Nat. Biomed. Eng. 1, 758–770 (2017).
Google Scholar
Correia, C. R. et al. Semipermeable capsules wrapping a multifunctional and self-regulated co-culture microenvironment for osteogenic differentiation. Sci. Rep. 6, 21883 (2016).
Google Scholar
Gregory, C. A., Gunn, W. G., Peister, A. & Prockop, D. J. An Alizarin red-based assay of mineralization by adherent cells in culture: comparison with cetylpyridinium chloride extraction. Anal. Biochem. 329, 77–84 (2004).
Google Scholar
Meloan, S. N. & Puchtler, H. Chemical mechanisms of staining methods: Von Kossa’s technique: what von Kossa really wrote and a modified reaction for selective demonstration of inorganic phosphates. J. Histotechnol. 8, 11–13 (1985).
Schmidt, J. R. et al. Osteoblast-released matrix vesicles, regulation of activity and composition by sulfated and non-sulfated glycosaminoglycans. Mol. Cell. Proteomics 15, 558–572 (2016).
Google Scholar
Xiao, Z. et al. Analysis of the extracellular matrix vesicle proteome in mineralizing osteoblasts. J. Cell. Physiol. 210, 325–335 (2007).
Google Scholar
Miller, B. A. et al. The ovine hepatic mitochondrial proteome: Understanding seasonal weight loss tolerance in two distinct breeds. PLoS ONE 14, e0212580 (2019).
Google Scholar
Deutsch, E. W. et al. The ProteomeXchange consortium in 2020: enabling ‘big data’ approaches in proteomics. Nucleic Acids Res. 48, D1145–D1152 (2020).
Google Scholar
Perez-Riverol, Y. et al. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 47, D442–D450 (2019).
Google Scholar
Pathan, M. et al. A novel community driven software for functional enrichment analysis of extracellular vesicles data. J. Extracell. Vesicles 6, 1321455 (2017).
Google Scholar
Pathan, M. et al. FunRich: an open access standalone functional enrichment and interaction network analysis tool. Proteomics 15, 2597–2601 (2015).
Google Scholar
Nadine, S., Patrício, S. G., Correia, C. R. & Mano, J. F. Dynamic microfactories co-encapsulating osteoblastic and adipose-derived stromal cells for the biofabrication of bone units. Biofabrication 12, 015005 (2019).
Google Scholar

