Preloader

Capacitive interdigitated system of high osteoinductive/conductive performance for personalized acting-sensing implants

  • 1.

    Massari, L. et al. Biophysical stimulation of bone and cartilage: state of the art and future perspectives. Int. Orthop. (SICOT) 43, 539–551 (2019).

    Google Scholar 

  • 2.

    Przekora, A. Current trends in fabrication of biomaterials for bone and cartilage regeneration: materials modifications and biophysical stimulations. Int. J. Mol. Sci. 20, 435 (2019).

  • 3.

    Soares dos Santos, M. P. et al. Capacitive technologies for highly controlled and personalized electrical stimulation by implantable biomedical systems. Sci. Rep. 9, 1–20 (2019).

    CAS 

    Google Scholar 

  • 4.

    Chen, C., Bai, X., Ding, Y. & Lee, I.-S. Electrical stimulation as a novel tool for regulating cell behavior in tissue engineering. Biomater. Res. 23, 25 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 5.

    Iandolo, D. et al. Development and characterization of organic electronic scaffolds for bone tissue engineering. Adv. Healthc. Mater. 5, 1505–1512 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 6.

    Soares dos Santos, M. P. et al. New cosurface capacitive stimulators for the development of active osseointegrative implantable devices. Sci. Rep. 6, 30231 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 7.

    Soares dos Santos, M. P., Ferreira, J. A. F., Ramos, A. & Simões, J. A. O. Active orthopaedic implants: towards optimality. J. Franklin Inst. 352, 813–834 (2015).

    Google Scholar 

  • 8.

    Hunter, D. J., March, L. & Chew, M. Osteoarthritis in 2020 and beyond: a Lancet Commission. Lancet 396, 1711–1712 (2020).

    PubMed 

    Google Scholar 

  • 9.

    Ferguson, R. J. et al. Hip replacement. Lancet 392, 1662–1671 (2018).

    PubMed 

    Google Scholar 

  • 10.

    Price, A. J. et al. Knee replacement. Lancet 392, 1672–1682 (2018).

    PubMed 

    Google Scholar 

  • 11.

    Labek, G., Thaler, M., Janda, W., Agreiter, M. & Stöckl, B. Revision rates after total joint replacement: cumulative results from worldwide joint register datasets. J. Bone Jt. Surg. Br. 93-B, 293–297 (2011).

    Google Scholar 

  • 12.

    McGrory, B. J., Etkin, C. D. & Lewallen, D. G. Comparing contemporary revision burden among hip and knee joint replacement registries. Arthroplasty Today 2, 83–86 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 13.

    Soares dos Santos, M. P. et al. Instrumented hip joint replacements, femoral replacements and femoral fracture stabilizers. Expert Rev. Med. Dev. 11, 617–635 (2014).

    CAS 

    Google Scholar 

  • 14.

    Kurtz, S. M. et al. Future young patient demand for primary and revision joint replacement: national projections from 2010 to 2030. Clin. Orthop. Relat. Res. 467, 2606–2612 (2009).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 15.

    Kurtz, S. M. et al. International survey of primary and revision total knee replacement. Int. Orthop. (SICOT) 35, 1783–1789 (2011).

    Google Scholar 

  • 16.

    Pabinger, C. & Geissler, A. Utilization rates of hip arthroplasty in OECD countries. Osteoarthr. Cartil. 22, 734–741 (2014).

    CAS 

    Google Scholar 

  • 17.

    Losina, E. & Katz, J. N. Total knee arthroplasty on the rise in younger patients: are we sure that past performance will guarantee future success? Arthritis Rheumat. 64, 339–341 (2012).

    PubMed 

    Google Scholar 

  • 18.

    Abdel, M. P., Roth, P., von, Harmsen, W. S. & Berry, D. J. What is the lifetime risk of revision for patients undergoing total hip arthroplasty?: A 40-year observational study of patients treated with the Charnley cemented total hip arthroplasty. Bone Jt J. 98-B, 1436–1440 (2016).

    CAS 

    Google Scholar 

  • 19.

    Troelsen, A., Malchau, E., Sillesen, N. & Malchau, H. A review of current fixation use and registry outcomes in total hip arthroplasty: the uncemented paradox. Clin. Orthop. Relat. Res. 471, 2052–2059 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 20.

    Asokan, A. et al. Cementless knee arthroplasty: a review of recent performance. Bone Jt. Open 2, 48–57 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 21.

    Sumner, D. R. Long-term implant fixation and stress-shielding in total hip replacement. J. Biomech. 48, 797–800 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 22.

    Goriainov, V., Cook, R. M., Latham, J. G., Dunlop, D. & Oreffo, R. O. C. Bone and metal: an orthopaedic perspective on osseointegration of metals. Acta Biomater. 10, 4043–4057 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 23.

    Cachão, J. H. et al. Altering the course of technologies to monitor loosening states of endoprosthetic implants. Sensors 20, 104 (2019).

    PubMed Central 

    Google Scholar 

  • 24.

    Torrão, J. N., dos Santos, M. P. S. & Ferreira, J. A. Instrumented knee joint implants: innovations and promising concepts. Expert Rev. Med. Dev. 12, 571–584 (2015).

    Google Scholar 

  • 25.

    Coelho, P. G. et al. Nanometer-scale features on micrometer-scale surface texturing: a bone histological, gene expression, and nanomechanical study. Bone 65, 25–32 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 26.

    Benum, P. & Aamodt, A. Uncemented custom femoral components in hip arthroplasty: a prospective clinical study of 191 hips followed for at least 7 years. Acta Orthopaed. 81, 427–435 (2010).

    Google Scholar 

  • 27.

    Ryan, G., Pandit, A. & Apatsidis, D. Fabrication methods of porous metals for use in orthopaedic applications. Biomaterials 27, 2651–2670 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • 28.

    Jing, D. et al. Pulsed electromagnetic fields promote osteogenesis and osseointegration of porous titanium implants in bone defect repair through a Wnt/β-catenin signaling-associated mechanism. Sci. Rep. 6, 32045 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 29.

    Simões, J. A. & Marques, A. T. Design of a composite hip femoral prosthesis. Mater. Des. 26, 391–401 (2005).

    Google Scholar 

  • 30.

    Goodman, S. B., Yao, Z., Keeney, M. & Yang, F. The future of biologic coatings for orthopaedic implants. Biomaterials 34, 3174–3183 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 31.

    Navarro, M., Michiardi, A., Castaño, O. & Planell, J. A. Biomaterials in orthopaedics. J. R. Soc. Interface 5, 1137–1158 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 32.

    Zhang, B., Myers, D., Wallace, G., Brandt, M. & Choong, P. Bioactive coatings for orthopaedic implants—recent trends in development of implant coatings. Int. J. Mol. Sci. 15, 11878–11921 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 33.

    Alves, N. M., Leonor, I. B., Azevedo, H. S., Reis, R. L. & Mano, J. F. Designing biomaterials based on biomineralization of bone. J. Mater. Chem. 20, 2911 (2010).

    CAS 

    Google Scholar 

  • 34.

    Kannan, S. et al. Synthesis, mechanical and biological characterization of ionic doped carbonated hydroxyapatite/β-tricalcium phosphate mixtures. Acta Biomater. 7, 1835–1843 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • 35.

    Bernardo, R. et al. Novel magnetic stimulation methodology for low-current implantable medical devices. Med. Eng. Phys. 73, 77–84 (2019).

    PubMed 

    Google Scholar 

  • 36.

    Soares dos Santos, M. P. et al. Towards an effective sensing technology to monitor micro-scale interface loosening of bioelectronic implants. Sci. Rep. 11, 3449 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 37.

    Bergmann, G., Graichen, F. & Rohlmann, A. Hip joint forces in sheep. J. Biomech. 32, 769–777 (1999).

    CAS 
    PubMed 

    Google Scholar 

  • 38.

    Graichen, F., Bergmann, G. & Rohlmann, A. Hip endoprosthesis for in vivo measurement of joint force and temperature. J. Biomech. 32, 1113–1117 (1999).

    CAS 
    PubMed 

    Google Scholar 

  • 39.

    Damm, P., Graichen, F., Rohlmann, A., Bender, A. & Bergmann, G. Total hip joint prosthesis for in vivo measurement of forces and moments. Med. Eng. Phys. 32, 95–100 (2010).

    PubMed 

    Google Scholar 

  • 40.

    Bergmann, G. et al. High-tech hip implant for wireless temperature measurements in vivo. PLoS ONE 7, e43489 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 41.

    Soares dos Santos, M. P. et al. Instrumented hip implants: electric supply systems. J. Biomech. 46, 2561–2571 (2013).

    PubMed 

    Google Scholar 

  • 42.

    Fukada, E. & Yasuda, I. On the piezoelectric effect of bone. J. Phys. Soc. Jpn 12, 1158–1162 (1957).

    Google Scholar 

  • 43.

    Griffin, M. & Bayat, A. Electrical stimulation in bone healing: critical analysis by evaluating levels of evidence. Eplasty 11, e34 (2011).

  • 44.

    Balint, R., Cassidy, N. J. & Cartmell, S. H. Electrical stimulation: a novel tool for tissue engineering. Tissue Eng. Part B Rev. 19, 48–57 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 45.

    Hartig, M., Joos, U. & Wiesmann, H. P. Capacitively coupled electric fields accelerate proliferation of osteoblast-like primary cells and increase bone extracellular matrix formation in vitro. Eur. Biophys. J. 29, 499–506 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • 46.

    Wiesmann, H., Hartig, M., Stratmann, U., Meyer, U. & Joos, U. Electrical stimulation influences mineral formation of osteoblast-like cells in vitro. Biochim. Biophys. Acta 1538, 28–37 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • 47.

    Zhuang, H. et al. Electrical stimulation induces the level of TGF-β1 mRNA in osteoblastic cells by a mechanism involving calcium/calmodulin pathway. Biochem. Biophys. Res. Commun. 237, 225–229 (1997).

    CAS 
    PubMed 

    Google Scholar 

  • 48.

    Wang, Z., Clark, C. C. & Brighton, C. T. Up-regulation of bone morphogenetic proteins in cultured murine bone cells with use of specific electric fields. J. Bone Jt Surg. 88, 1053–1065 (2006).

    Google Scholar 

  • 49.

    Clark, C. C., Wang, W. & Brighton, C. T. Up-regulation of expression of selected genes in human bone cells with specific capacitively coupled electric fields: electrical stimulation of human osteoblasts. J. Orthop. Res. 32, 894–903 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 50.

    Brighton, C. T. & Pollack, S. R. Treatment of nonunion of the tibia with a capacitively coupled electrical field. J. Trauma 24, 153–155 (1984).

    CAS 
    PubMed 

    Google Scholar 

  • 51.

    Impagliazzo, A., Mattei, A., Spurio Pompili, G. F., Setti, S. & Cadossi, R. Treatment of nonunited fractures with capacitively coupled electric field. J. Orthop. Traumatol. 7, 16–22 (2006).

    Google Scholar 

  • 52.

    Piazzolla, A. et al. Capacitive coupling electric fields in the treatment of vertebral compression fractures. J. Biol. Regul. Homeost. Agents 29, 637–646 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 53.

    Massari, L. et al. Does capacitively coupled electric fields stimulation improve clinical outcomes after instrumented spinal fusion? A multicentered randomized, prospective, double-blind, placebo-controlled trial. Int. J. Spine Surg. 14, 936–943 (2020).

    PubMed 

    Google Scholar 

  • 54.

    Min, Y. et al. Self-doped polyaniline-based interdigitated electrodes for electrical stimulation of osteoblast cell lines. Synth. Metals 198, 308–313 (2014).

    CAS 

    Google Scholar 

  • 55.

    Pina, S. et al. Biological responses of brushite-forming Zn- and ZnSr- substituted beta-tricalcium phosphate bone cements. Eur. Cell Mater. 20, 162–177 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • 56.

    Pina, S. et al. In vitro performance assessment of new brushite-forming Zn- and ZnSr-substituted β-TCP bone cements. J. Biomed. Mater. Res. 94B, 414–420 (2010).

    CAS 

    Google Scholar 

  • 57.

    Torres, P. M. C. et al. Effects of Mn-doping on the structure and biological properties of β-tricalcium phosphate. J. Inorg. Biochem. 136, 57–66 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 58.

    Torres, P. M. C. et al. Injectable MnSr-doped brushite bone cements with improved biological performance. J. Mater. Chem. B 5, 2775–2787 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 59.

    Hasegawa, T. Ultrastructure and biological function of matrix vesicles in bone mineralization. Histochem. Cell Biol. 149, 289–304 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 60.

    Zhang, J., Neoh, K. G. & Kang, E. Electrical stimulation of adipose‐derived mesenchymal stem cells and endothelial cells co‐cultured in a conductive scaffold for potential orthopaedic applications. J Tissue Eng Regen Med 12, 878–889 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 61.

    Xavier, M., de Andrés, M. C., Spencer, D., Oreffo, R. O. C. & Morgan, H. Size and dielectric properties of skeletal stem cells change critically after enrichment and expansion from human bone marrow: consequences for microfluidic cell sorting. J. R. Soc. Interface 14, 20170233 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 62.

    Dorozhkin, S. V. & Epple, M. Biological and medical significance of calcium phosphates. Angew Chem. Int. Ed. Engl. 41, 3130–3146 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • 63.

    McGilvray, K. C. et al. Implantable microelectromechanical sensors for diagnostic monitoring and post-surgical prediction of bone fracture healing: implantable microelectromechanical sensors for diagnostic monitoring. J. Orthop. Res. 33, 1439–1446 (2015).

    PubMed 

    Google Scholar 

  • 64.

    Rutkovskiy, A., Stensløkken, K.-O. & Vaage, I. J. Osteoblast differentiation at a glance. Med. Sci. Monit. Basic Res. 22, 95–106 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 65.

    Marote, A. et al. A proteomic analysis of the interactions between poly(L-lactic acid) nanofibers and SH-SY5Y neuronal-like cells. AIMS Mol. Sci. 3, 661–682 (2016).

    CAS 

    Google Scholar 

  • 66.

    da Rocha, J. F., da Cruz e Silva, O. A. B. & Vieira, S. I. Analysis of the amyloid precursor protein role in neuritogenesis reveals a biphasic SH-SY5Y neuronal cell differentiation model. J. Neurochem. 134, 288–301 (2015).

    PubMed 

    Google Scholar 

  • 67.

    Leppik, L., Oliveira, K. M. C., Bhavsar, M. B. & Barker, J. H. Electrical stimulation in bone tissue engineering treatments. Eur. J. Trauma Emerg. Surg. 46, 231–244 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 68.

    Bjørge, I. M., Kim, S. Y., Mano, J. F., Kalionis, B. & Chrzanowski, W. Extracellular vesicles, exosomes and shedding vesicles in regenerative medicinea new paradigm for tissue repair. Biomater. Sci. 6, 60–78 (2018).

    Google Scholar 

  • 69.

    Rosset, E. M. & Bradshaw, A. D. SPARC/osteonectin in mineralized tissue. Matrix Biol. 52–54, 78–87 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 70.

    Wrobel, E., Leszczynska, J. & Brzoska, E. The characteristics of human bone-derived cells (HBDCS) during osteogenesis in vitro. Cell. Mol. Biol. Lett. 21, 26 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 71.

    Shafiee, A. et al. A comparison between osteogenic differentiation of human unrestricted somatic stem cells and mesenchymal stem cells from bone marrow and adipose tissue. Biotechnol. Lett. 33, 1257–1264 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • 72.

    Simon, P. et al. First evidence of octacalcium phosphate@osteocalcin nanocomplex as skeletal bone component directing collagen triple–helix nanofibril mineralization. Sci. Rep. 8, 13696 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 73.

    Ivanovski, S., Hamlet, S., Retzepi, M., Wall, I. & Donos, N. Transcriptional profiling of ‘guided bone regeneration’ in a critical-size calvarial defect. Clin. Oral Implants Res. 22, 382–389 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • 74.

    Wu, Y., Xiao, J., Wu, L., Tian, W. & Liu, L. Expression of glutamyl aminopeptidase by osteogenic induction in rat bone marrow stromal cells. Cell Biol. Int. 32, 748–753 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • 75.

    Nilsen, R. & Magnusson, B. C. Enzyme histochemical studies of induced heterotopic cartilage and bone formation in guinea pigs with special reference to acid phosphatase. Scand. J. Dent. Res. 89, 491–498 (1981).

    CAS 
    PubMed 

    Google Scholar 

  • 76.

    Suzuki, M. & Mizuno, A. A novel human Cl(-) channel family related to Drosophila flightless locus. J. Biol. Chem. 279, 22461–22468 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • 77.

    Li, L. et al. Rare copy number variants in the genome of Chinese female children and adolescents with Turner syndrome. Biosci. Rep. 39, BSR20181305 (2019).

  • 78.

    Hamm, A. et al. Frequent expression loss of Inter-alpha-trypsin inhibitor heavy chain (ITIH) genes in multiple human solid tumors: a systematic expression analysis. BMC Cancer 8, 25 (2008).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 79.

    Simunovic, F. et al. Increased differentiation and production of extracellular matrix components of primary human osteoblasts after cocultivation with endothelial cells: a quantitative proteomics approach. J. Cell. Biochem. 120, 396–404 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 80.

    Pellinen, T. et al. Small GTPase Rab21 regulates cell adhesion and controls endosomal traffic of beta1-integrins. J. Cell Biol. 173, 767–780 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 81.

    Yang, C.-W. et al. An integrative transcriptomic analysis for identifying novel target genes corresponding to severity spectrum in spinal muscular atrophy. PLoS ONE 11, e0157426 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 82.

    Yue, R., Shen, B. & Morrison, S. J. Clec11a/osteolectin is an osteogenic growth factor that promotes the maintenance of the adult skeleton. Elife 5, e18782 (2016).

  • 83.

    Hu, Y. et al. Human umbilical cord mesenchymal stromal cells-derived extracellular vesicles exert potent bone protective effects by CLEC11A-mediated regulation of bone metabolism. Theranostics 10, 2293–2308 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 84.

    Lee, E.-J. et al. PTX3 stimulates osteoclastogenesis by increasing osteoblast RANKL production. J. Cell. Physiol. 229, 1744–1752 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 85.

    Zhang, J. et al. Neurotrophin-3 acts on the endothelial-mesenchymal transition of heterotopic ossification in rats. J. Cell. Mol. Med. 23, 2595–2609 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 86.

    Park, K.-R. et al. Peroxiredoxin 6 inhibits osteogenic differentiation and bone formation through human dental pulp stem cells and induces delayed bone development. Antioxid. Redox Signal. 30, 1969–1982 (2019).

    PubMed 

    Google Scholar 

  • 87.

    Hoshino, Y. et al. Smad4 decreases the population of pancreatic cancer-initiating cells through transcriptional repression of ALDH1A1. Am. J. Pathol. 185, 1457–1470 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 88.

    Nallamshetty, S. et al. Deficiency of retinaldehyde dehydrogenase 1 induces BMP2 and increases bone mass in vivo. PLoS ONE 8, e71307 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 89.

    Takashi, M. et al. Differential gene expression of collagen-binding small leucine-rich proteoglycans and lysyl hydroxylases, during mineralization by MC3T3-E1 cells cultured on titanium implant material. Eur. J. Oral Sci. 113, 225–231 (2005).

    PubMed 

    Google Scholar 

  • 90.

    Sirivisoot, S., Pareta, R. A. & Webster, T. J. A conductive nanostructured polymer electrodeposited on titanium as a controllable, local drug delivery platform. J. Biomed. Mater. Res. 99A, 586–597 (2011).

    CAS 

    Google Scholar 

  • 91.

    Tsimbouri, P. M. et al. Stimulation of 3D osteogenesis by mesenchymal stem cells using a nanovibrational bioreactor. Nat. Biomed. Eng. 1, 758–770 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 92.

    Correia, C. R. et al. Semipermeable capsules wrapping a multifunctional and self-regulated co-culture microenvironment for osteogenic differentiation. Sci. Rep. 6, 21883 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 93.

    Gregory, C. A., Gunn, W. G., Peister, A. & Prockop, D. J. An Alizarin red-based assay of mineralization by adherent cells in culture: comparison with cetylpyridinium chloride extraction. Anal. Biochem. 329, 77–84 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • 94.

    Meloan, S. N. & Puchtler, H. Chemical mechanisms of staining methods: Von Kossa’s technique: what von Kossa really wrote and a modified reaction for selective demonstration of inorganic phosphates. J. Histotechnol. 8, 11–13 (1985).

    Google Scholar 

  • 95.

    Schmidt, J. R. et al. Osteoblast-released matrix vesicles, regulation of activity and composition by sulfated and non-sulfated glycosaminoglycans. Mol. Cell. Proteomics 15, 558–572 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 96.

    Xiao, Z. et al. Analysis of the extracellular matrix vesicle proteome in mineralizing osteoblasts. J. Cell. Physiol. 210, 325–335 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • 97.

    Miller, B. A. et al. The ovine hepatic mitochondrial proteome: Understanding seasonal weight loss tolerance in two distinct breeds. PLoS ONE 14, e0212580 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 98.

    Deutsch, E. W. et al. The ProteomeXchange consortium in 2020: enabling ‘big data’ approaches in proteomics. Nucleic Acids Res. 48, D1145–D1152 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 99.

    Perez-Riverol, Y. et al. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 47, D442–D450 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 100.

    Pathan, M. et al. A novel community driven software for functional enrichment analysis of extracellular vesicles data. J. Extracell. Vesicles 6, 1321455 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 101.

    Pathan, M. et al. FunRich: an open access standalone functional enrichment and interaction network analysis tool. Proteomics 15, 2597–2601 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 102.

    Nadine, S., Patrício, S. G., Correia, C. R. & Mano, J. F. Dynamic microfactories co-encapsulating osteoblastic and adipose-derived stromal cells for the biofabrication of bone units. Biofabrication 12, 015005 (2019).

    PubMed 

    Google Scholar 

  • Source link