Preloader

Cancer proteogenomics: current impact and future prospects

  • Slamon, D. J. et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N. Engl. J. Med. 344, 783–792 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • Druker, B. J. et al. Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N. Engl. J. Med. 355, 2408–2417 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • Awad, M. M. & Shaw, A. T. ALK inhibitors in non-small cell lung cancer: crizotinib and beyond. Clin. Adv. Hematol. Oncol. 12, 429–439 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Shaw, A. T. et al. Resensitization to crizotinib by the lorlatinib ALK resistance mutation L1198F. N. Engl. J. Med. 374, 54–61 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Robert, C. et al. Improved overall survival in melanoma with combined dabrafenib and trametinib. N. Engl. J. Med. 372, 30–39 (2015).

    PubMed 

    Google Scholar 

  • Brown, A.-L., Li, M., Goncearenco, A. & Panchenko, A. R. Finding driver mutations in cancer: elucidating the role of background mutational processes. PLoS Comput. Biol. 15, e1006981 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Krug, K. et al. Proteogenomic landscape of breast cancer tumorigenesis and targeted therapy. Cell 183, 1436–1456.e31 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Satpathy, S. et al. Microscaled proteogenomic methods for precision oncology. Nat. Commun. 11, 532 (2020). This proteogenomic study of core needle biopsy samples establishes proof of concept for genomic and proteomic profiling starting from small sample quantities.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Krug, K., Nahnsen, S. & Macek, B. Mass spectrometry at the interface of proteomics and genomics. Mol. Biosyst. 7, 284–291 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Menschaert, G. & Fenyö, D. Proteogenomics from a bioinformatics angle: a growing field. Mass. Spectrom. Rev. 36, 584–599 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Nesvizhskii, A. I. Proteogenomics: concepts, applications and computational strategies. Nat. Methods 11, 1114–1125 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ruggles, K. V. et al. Methods, tools and current perspectives in proteogenomics. Mol. Cell. Proteom. 16, 959–981 (2017). This work reviews the tools and techniques used to analyse proteogenomics data.

    CAS 

    Google Scholar 

  • Zhang, B. et al. Clinical potential of mass spectrometry-based proteogenomics. Nat. Rev. Clin. Oncol. 16, 256–268 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Archer, T. C. et al. Proteomics, post-translational modifications, and integrative analyses reveal molecular heterogeneity within medulloblastoma subgroups. Cancer Cell 34, 396–410.e8 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, Y.-J. et al. Proteogenomics of non-smoking lung cancer in East Asia delineates molecular signatures of pathogenesis and progression. Cell 182, e17 (2020). This comprehensive proteogenomic study includes a large number of samples and multiple omics data types, focusing on the biology of LUAD in non-smokers.

    Google Scholar 

  • Clark, D. J. et al. Integrated proteogenomic characterization of clear cell renal cell carcinoma. Cell 179, 964–983.e31 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dou, Y. et al. Proteogenomic characterization of endometrial carcinoma. Cell 180, 729–748.e26 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gao, Q. et al. Integrated proteogenomic characterization of HBV-related hepatocellular carcinoma. Cell 179, 561–577.e22 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Gillette, M. A. et al. Proteogenomic characterization reveals therapeutic vulnerabilities in lung adenocarcinoma. Cell 182, 200–225.e35 (2020). This typical CPTAC proteogenomic study with extensive data and expansive analyses characterizes LUAD biology and therapeutic possibilities.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McDermott, J. E. et al. Proteogenomic characterization of ovarian HGSC implicates mitotic kinases, replication stress in observed chromosomal instability. Cell Rep. Med. 1, 100004 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Mertins, P. et al. Proteogenomics connects somatic mutations to signalling in breast cancer. Nature 534, 55–62 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mun, D.-G. et al. Proteogenomic characterization of human early-onset gastric cancer. Cancer Cell 35, 111–124.e10 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Petralia, F. et al. Integrated proteogenomic characterization across major histological types of pediatric brain cancer. Cell 183, 1962–1985.e31 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Satpathy, S. et al. A proteogenomic portrait of lung squamous cell carcinoma. Cell 184, 4348–4371.e40 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Stewart, P. A. et al. Proteogenomic landscape of squamous cell lung cancer. Nat. Commun. 10, 3578 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Vasaikar, S. et al. Proteogenomic analysis of human colon cancer reveals new therapeutic opportunities. Cell 177, 1035–1049.e19 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, B. et al. Proteogenomic characterization of human colon and rectal cancer. Nature 513, 382–387 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Huang, C. et al. Proteogenomic insights into the biology and treatment of HPV-negative head and neck squamous cell carcinoma. Cancer Cell 39, 361–379.e16 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Zhang, H. et al. Integrated proteogenomic characterization of human high-grade serous ovarian cancer. Cell 166, 755–765 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, L.-B. et al. Proteogenomic and metabolomic characterization of human glioblastoma. Cancer Cell 39, 509–528.e20 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Johansson, H. J. et al. Breast cancer quantitative proteome and proteogenomic landscape. Nat. Commun. 10, 1600 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Sinha, A. et al. The proteogenomic landscape of curable prostate cancer. Cancer Cell 35, 414–427.e6 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yang, M. et al. Proteogenomics and Hi-C reveal transcriptional dysregulation in high hyperdiploid childhood acute lymphoblastic leukemia. Nat. Commun. 10, 1519 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, C. et al. Integrated omics of metastatic colorectal cancer. Cancer Cell 38, 734–747.e9 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Aure, M. R. et al. Integrative clustering reveals a novel split in the luminal A subtype of breast cancer with impact on outcome. Breast Cancer Res. 19, 44 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Hu, Y. et al. Integrated proteomic and glycoproteomic characterization of human high-grade serous ovarian carcinoma. Cell Rep. 33, 108276 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pan, J. et al. Glycoproteomics-based signatures for tumor subtyping and clinical outcome prediction of high-grade serous ovarian cancer. Nat. Commun. 11, 6139 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Austen, M., Cerni, C., Lüscher-Firzlaff, J. M. & Lüscher, B. YY1 can inhibit c-Myc function through a mechanism requiring DNA binding of YY1 but neither its transactivation domain nor direct interaction with c-Myc. Oncogene 17, 511–520 (1998).

    CAS 
    PubMed 

    Google Scholar 

  • Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. Nature 511, 543–550 (2014).

    Google Scholar 

  • Xu, J.-Y. et al. Integrative proteomic characterization of human lung adenocarcinoma. Cell 182, 245–261.e17 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Roper, N. et al. APOBEC mutagenesis and copy-number alterations are drivers of proteogenomic tumor evolution and heterogeneity in metastatic thoracic tumors. Cell Rep. 26, 2651–2666.e6 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cancer Genome Atlas Research Network. Comprehensive molecular characterization of gastric adenocarcinoma. Nature 513, 202–209 (2014).

    Google Scholar 

  • Wang, K. et al. Whole-genome sequencing and comprehensive molecular profiling identify new driver mutations in gastric cancer. Nat. Genet. 46, 573–582 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Hoang, M. L. et al. Mutational signature of aristolochic acid exposure as revealed by whole-exome sequencing. Sci. Transl. Med. 5, 197ra102 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Yuan, G. et al. Elevated NSD3 histone methylation activity drives squamous cell lung cancer. Nature 590, 504–508 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yanovich-Arad, G. et al. Proteogenomics of glioblastoma associates molecular patterns with survival. Cell Rep. 34, 108787 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Harding, J. & Burtness, B. Cetuximab: an epidermal growth factor receptor chemeric human–murine monoclonal antibody. Drugs Today 41, 107–127 (2005).

    CAS 

    Google Scholar 

  • Seiwert, T. Y. et al. Safety and clinical activity of pembrolizumab for treatment of recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-012): an open-label, multicentre, phase 1b trial. Lancet Oncol. 17, 956–965 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Northcott, P. A. et al. The whole-genome landscape of medulloblastoma subtypes. Nature 547, 311–317 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brennan, C. W. et al. The somatic genomic landscape of glioblastoma. Cell 155, 462–477 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rivero-Hinojosa, S. et al. Proteomic analysis of medulloblastoma reveals functional biology with translational potential. Acta Neuropathol. Commun. 6, 48 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Forget, A. et al. Aberrant ERBB4–SRC signaling as a hallmark of Group 4 medulloblastoma revealed by integrative phosphoproteomic profiling. Cancer Cell 34, 379–395.e7 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Latonen, L. et al. Integrative proteomics in prostate cancer uncovers robustness against genomic and transcriptomic aberrations during disease progression. Nat. Commun. 9, 1176 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Bateman, N. W. et al. Proteogenomic landscape of uterine leiomyomas from hereditary leiomyomatosis and renal cell cancer patients. Sci. Rep. 11, 9371 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Buccitelli, C. & Selbach, M. mRNAs, proteins and the emerging principles of gene expression control. Nat. Rev. Genet. 21, 630–644 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Flores-Morales, A. et al. Proteogenomic characterization of patient-derived xenografts highlights the role of REST in neuroendocrine differentiation of castration-resistant prostate cancer. Clin. Cancer Res. 25, 595–608 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Huang, K.-L. et al. Proteogenomic integration reveals therapeutic targets in breast cancer xenografts. Nat. Commun. 8, 14864 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Mundt, F. et al. Mass spectrometry-based proteomics reveals potential roles of NEK9 and MAP2K4 in resistance to PI3K inhibition in triple-negative breast cancers. Cancer Res. 78, 2732–2746 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sheth, M., Zhang, J. & Zenklusen, J. C. Collaborative Genomics Projects: A Comprehensive Guide Ch. 4 (Academic, 2016).

  • Mertins, P. et al. Ischemia in tumors induces early and sustained phosphorylation changes in stress kinase pathways but does not affect global protein levels. Mol. Cell. Proteom. 13, 1690–1704 (2014).

    CAS 

    Google Scholar 

  • Mertins, P. et al. Reproducible workflow for multiplexed deep-scale proteome and phosphoproteome analysis of tumor tissues by liquid chromatography-mass spectrometry. Nat. Protoc. 13, 1632–1661 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tian, C. et al. Proteomic analyses of ECM during pancreatic ductal adenocarcinoma progression reveal different contributions by tumor and stromal cells. Proc. Natl Acad. Sci. USA 116, 19609–19618 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Petralia, F. et al. BayesDeBulk: a flexible bayesian algorithm for the deconvolution of bulk tumor data. bioRxiv https://doi.org/10.1101/2021.06.25.449763 (2021).

    Article 

    Google Scholar 

  • Buczak, K. et al. Spatially resolved analysis of FFPE tissue proteomes by quantitative mass spectrometry. Nat. Protoc. 15, 2956–2979 (2020). This work uses laser-capture microdissection followed by MS to profile FFPE tissues to quantify intratumour heterogeneity.

    CAS 
    PubMed 

    Google Scholar 

  • Ezzoukhry, Z. et al. Combining laser capture microdissection and proteomics reveals an active translation machinery controlling invadosome formation. Nat. Commun. 9, 2031 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Fan, Y. et al. Proteomic profiling of gastric signet ring cell carcinoma tissues reveals characteristic changes of the complement cascade pathway. Mol. Cell. Proteom. 20, 100068 (2021).

    CAS 

    Google Scholar 

  • Großerueschkamp, F. et al. Spatial and molecular resolution of diffuse malignant mesothelioma heterogeneity by integrating label-free FTIR imaging, laser capture microdissection and proteomics. Sci. Rep. 7, 44829 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Hiroshima, Y. et al. Novel targets identified by integrated cancer–stromal interactome analysis of pancreatic adenocarcinoma. Cancer Lett. 469, 217–227 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Staunton, L. et al. Pathology-driven comprehensive proteomic profiling of the prostate cancer tumor microenvironment. Mol. Cancer Res. 15, 281–293 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Zupa, A. et al. A pilot characterization of human lung NSCLC by protein pathway activation mapping. J. Thorac. Oncol. 7, 1755–1766 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Corchete, L. A. et al. Systematic comparison and assessment of RNA-seq procedures for gene expression quantitative analysis. Sci. Rep. 10, 19737 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pabinger, S. et al. A survey of tools for variant analysis of next-generation genome sequencing data. Brief. Bioinform. 15, 256–278 (2014).

    PubMed 

    Google Scholar 

  • Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    CAS 

    Google Scholar 

  • Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schroeder, C. M. et al. A comprehensive quality control workflow for paired tumor–normal NGS experiments. Bioinformatics 33, 1721–1722 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Wang, L., Wang, S. & Li, W. RSeQC: quality control of RNA-seq experiments. Bioinformatics 28, 2184–2185 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Bian, X. et al. Comparing the performance of selected variant callers using synthetic data and genome segmentation. BMC Bioinforma. 19, 429 (2018).

    CAS 

    Google Scholar 

  • Kim, S. et al. Strelka2: fast and accurate calling of germline and somatic variants. Nat. Methods 15, 591–594 (2018).

    CAS 

    Google Scholar 

  • Koboldt, D. C. et al. VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res. 22, 568–576 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-seq data with or without a reference genome. BMC Bioinforma. 12, 323 (2011).

    CAS 

    Google Scholar 

  • Trapnell, C. et al. Transcript assembly and quantification by RNA-seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28, 511–515 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Conesa, A. et al. A survey of best practices for RNA-seq data analysis. Genome Biol. 17, 13 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • DePristo, M. A. et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 43, 491–498 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Van der Auwera, G. A. et al. From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr. Protoc. Bioinforma. 43, 11.10.1–11.10.33 (2013).

    Google Scholar 

  • Grossman, R. L. et al. Toward a shared vision for cancer genomic data. N. Engl. J. Med. 375, 1109–1112 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Kim, S. & Pevzner, P. A. MS-GF+ makes progress towards a universal database search tool for proteomics. Nat. Commun. 5, 5277 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • Kong, A. T., Leprevost, F. V., Avtonomov, D. M., Mellacheruvu, D. & Nesvizhskii, A. I. MSFragger: ultrafast and comprehensive peptide identification in mass spectrometry-based proteomics. Nat. Methods 14, 513–520 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • da Veiga Leprevost, F. et al. Philosopher: a versatile toolkit for shotgun proteomics data analysis. Nat. Methods 17, 869–870 (2020). This work presents a pipeline for processing MS data.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Rudnick, P. A. et al. A description of the Clinical Proteomic Tumor Analysis Consortium (CPTAC) common data analysis pipeline. J. Proteome Res. 15, 1023–1032 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, C., Hou, J., Tanner, J. J. & Cheng, J. Bioinformatics methods for mass spectrometry-based proteomics data analysis. Int. J. Mol. Sci. 21, 2873 (2020).

    CAS 
    PubMed Central 

    Google Scholar 

  • Ma, W. et al. DreamAI: algorithm for the imputation of proteomics data. bioRxiv https://doi.org/10.1101/2020.07.21.214205 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, X. & Zhang, B. customProDB: an R package to generate customized protein databases from RNA-seq data for proteomics search. Bioinformatics 29, 3235–3237 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ruggles, K. V. et al. An analysis of the sensitivity of proteogenomic mapping of somatic mutations and novel splicing events in cancer. Mol. Cell. Proteom. 15, 1060–1071 (2016). This work uses mutations identified in DNA and RNA to detect mutated peptides in corresponding proteins.

    CAS 

    Google Scholar 

  • Johnson, W. E., Evan Johnson, W., Li, C. & Rabinovic, A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 8, 118–127 (2007).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Song, X. et al. Insights into impact of DNA copy number alteration and methylation on the proteogenomic landscape of human ovarian cancer via a multi-omics integrative analysis. Mol. Cell. Proteom. 18, S52–S65 (2019).

    Google Scholar 

  • Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, J., Vasaikar, S., Shi, Z., Greer, M. & Zhang, B. WebGestalt 2017: a more comprehensive, powerful, flexible and interactive gene set enrichment analysis toolkit. Nucleic Acids Res. 45, W130–W137 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Krug, K. et al. A curated resource for phosphosite-specific signature analysis. Mol. Cell. Proteom. 18, 576–593 (2019). This work introduces a pathway database resource based on phosphosites, along with determination of site-specific enrichment.

    CAS 

    Google Scholar 

  • Coudray, N. et al. Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning. Nat. Med. 24, 1559–1567 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Wen, B. et al. Deep learning in proteomics. Proteomics 20, e1900335 (2020).

    PubMed 

    Google Scholar 

  • Coscia, F. et al. Multi-level proteomics identifies CT45 as a chemosensitivity mediator and immunotherapy target in ovarian cancer. Cell 175, 159–170.e16 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rozenblatt-Rosen, O. et al. The Human Tumor Atlas Network: charting tumor transitions across space and time at single-cell resolution. Cell 181, 236–249 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kelly, R. T. Single-cell proteomics: progress and prospects. Mol. Cell. Proteom. 19, 1739–1748 (2020). This work reviews strategies for proteomic profiling of single cells and samples with very low input amounts.

    CAS 

    Google Scholar 

  • Slavov, N. Single-cell protein analysis by mass spectrometry. Curr. Opin. Chem. Biol. 60, 1–9 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Tsai, C.-F. et al. An improved boosting to amplify signal with isobaric labeling (iBASIL) strategy for precise quantitative single-cell proteomics. Mol. Cell. Proteom. 19, 828–838 (2020).

    CAS 

    Google Scholar 

  • Rodriguez, H., Zenklusen, J. C., Staudt, L. M., Doroshow, J. H. & Lowy, D. R. The next horizon in precision oncology: proteogenomics to inform cancer diagnosis and treatment. Cell 184, 1661–1670 (2021). This work is a perspective on the role of proteogenomics in the diagnosis and treatment of patients with cancer, and its promise for precision oncology.

    CAS 
    PubMed 

    Google Scholar 

  • Aebersold, R. & Mann, M. Mass-spectrometric exploration of proteome structure and function. Nature 537, 347–355 (2016).

    CAS 

    Google Scholar 

  • Lössl, P., van de Waterbeemd, M. & Heck, A. Jr The diverse and expanding role of mass spectrometry in structural and molecular biology. EMBO J. 35, 2634–2657 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, G., Annan, R. S., Carr, S. A. & Neubert, T. A. Overview of peptide and protein analysis by mass spectrometry. Curr. Protoc. Protein Sci. 62, 16.1.1–16.1.30 (2010).

    Google Scholar 

  • Li, J. et al. TMTpro reagents: a set of isobaric labeling mass tags enables simultaneous proteome-wide measurements across 16 samples. Nat. Methods 17, 399–404 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Thompson, A. et al. TMTpro: design, synthesis, and initial evaluation of a proline-based isobaric 16-plex Tandem Mass Tag reagent set. Anal. Chem. 91, 15941–15950 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Hughes, C. S. et al. Single-pot, solid-phase-enhanced sample preparation for proteomics experiments. Nat. Protoc. 14, 68–85 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Marchione, D. M. et al. HYPERsol: high-quality data from archival FFPE tissue for clinical proteomics. J. Proteome Res. 19, 973–983 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Piehowski, P. D. et al. Residual tissue repositories as a resource for population-based cancer proteomic studies. Clin. Proteom. 15, 26 (2018).

    Google Scholar 

  • Hebert, A. S. et al. Comprehensive single-shot proteomics with FAIMS on a hybrid orbitrap mass spectrometer. Anal. Chem. 90, 9529–9537 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schweppe, D. K. et al. Characterization and optimization of multiplexed quantitative analyses using high-field asymmetric-waveform ion mobility mass spectrometry. Anal. Chem. 91, 4010–4016 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Udeshi, N. D. et al. Rapid and deep-scale ubiquitylation profiling for biology and translational research. Nat. Commun. 11, 359 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Erickson, B. K. et al. Active instrument engagement combined with a real-time database search for improved performance of sample multiplexing workflows. J. Proteome Res. 18, 1299–1306 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chapman, J. D., Goodlett, D. R. & Masselon, C. D. Multiplexed and data-independent tandem mass spectrometry for global proteome profiling. Mass. Spectrom. Rev. 33, 452–470 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Betancourt, L. H. et al. The human melanoma proteome atlas—defining the molecular pathology. Clin. Transl. Med. 11, e473 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Meier-Abt, F. et al. The protein landscape of chronic lymphocytic leukemia (CLL). Blood 138, 2514–2525 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Mell, P. M. & Grance, T. The NIST definition of cloud computing. https://doi.org/10.6028/nist.sp.800-145 (National Institute of Standards and Technology, 2011).

  • Birger, C. et al. FireCloud, a scalable cloud-based platform for collaborative genome analysis: strategies for reducing and controlling costs. bioRxiv https://doi.org/10.1101/209494 (2017).

    Article 

    Google Scholar 

  • Van der Auwera, G. A. & O’Connor, B. D. Genomics in the Cloud: Using Docker, GATK, and WDL in Terra (‘O’Reilly Media, 2020).

  • Mani, D. R. et al. PANOPLY: a cloud-based platform for automated and reproducible proteogenomic data analysis. Nat. Methods 18, 580–582 (2021). This work presents an open-source pipeline for comprehensive and integrated analysis of proteogenomics data, encapsulating common methods from published flagship studies.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bantscheff, M., Lemeer, S., Savitski, M. M. & Kuster, B. Quantitative mass spectrometry in proteomics: critical review update from 2007 to the present. Anal. Bioanal. Chem. 404, 939–965 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Bantscheff, M. et al. Robust and sensitive iTRAQ quantification on an LTQ Orbitrap mass spectrometer. Mol. Cell. Proteom. 7, 1702–1713 (2008).

    CAS 

    Google Scholar 

  • Gan, C. S., Chong, P. K., Pham, T. K. & Wright, P. C. Technical, experimental, and biological variations in isobaric tags for relative and absolute quantitation (iTRAQ). J. Proteome Res. 6, 821–827 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • Karp, N. A. et al. Addressing accuracy and precision issues in iTRAQ quantitation. Mol. Cell. Proteom. 9, 1885–1897 (2010).

    CAS 

    Google Scholar 

  • Mertins, P. et al. iTRAQ labeling is superior to mTRAQ for quantitative global proteomics and phosphoproteomics. Mol. Cell. Proteom. 11, M111.014423 (2012).

    Google Scholar 

  • Ow, S. Y. et al. iTRAQ underestimation in simple and complex mixtures: ‘the good, the bad and the ugly’. J. Proteome Res. 8, 5347–5355 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • Savitski, M. M. et al. Measuring and managing ratio compression for accurate iTRAQ/TMT quantification. J. Proteome Res. 12, 3586–3598 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Svinkina, T. et al. Deep, quantitative coverage of the lysine acetylome using novel anti-acetyl-lysine antibodies and an optimized proteomic workflow. Mol. Cell. Proteom. 14, 2429–2440 (2015).

    CAS 

    Google Scholar 

  • Chen, R., Im, H. & Snyder, M. Whole-exome enrichment with the illumina truseq exome enrichment platform. Cold Spring Harb. Protoc. 2015, 642–648 (2015).

    PubMed 

    Google Scholar 

  • Slatko, B. E., Gardner, A. F. & Ausubel, F. M. Overview of next-generation sequencing technologies. Curr. Protoc. Mol. Biol. 122, e59 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • van Dijk, E. L., Jaszczyszyn, Y., Naquin, D. & Thermes, C. The third revolution in sequencing technology. Trends Genet. 34, 666–681 (2018).

    PubMed 

    Google Scholar 

  • Goodwin, S., McPherson, J. D. & McCombie, W. R. Coming of age: ten years of next-generation sequencing technologies. Nat. Rev. Genet. 17, 333–351 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • [No authors listed]. Method of the year 2013. Nat. Methods 11, 1 (2014).

    Google Scholar 

  • Choi, J. R., Yong, K. W., Choi, J. Y. & Cowie, A. C. Single-cell RNA requencing and its combination with protein and DNA analyses. Cells 9, 1130 (2020).

    PubMed Central 

    Google Scholar 

  • Ramsköld, D. et al. Full-length mRNA-seq from single-cell levels of RNA and individual circulating tumor cells. Nat. Biotechnol. 30, 777–782 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Hashimshony, T., Wagner, F., Sher, N. & Yanai, I. CEL-seq: single-cell RNA-seq by multiplexed linear amplification. Cell Rep. 2, 666–673 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Sasagawa, Y. et al. Quartz-seq: a highly reproducible and sensitive single-cell RNA sequencing method, reveals non-genetic gene-expression heterogeneity. Genome Biol. 14, R31 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Hu, P. et al. Dissecting cell-type composition and activity-dependent transcriptional state in mammalian brains by massively parallel single-nucleus RNA-seq. Mol. Cell 68, 1006–1015.e7 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, S., Lake, B. B. & Zhang, K. High-throughput sequencing of the transcriptome and chromatin accessibility in the same cell. Nat. Biotechnol. 37, 1452–1457 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ji, Z., Zhou, W., Hou, W. & Ji, H. Single-cell ATAC-seq signal extraction and enhancement with SCATE. Genome Biol. 21, 161 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Yu, W., Uzun, Y., Zhu, Q., Chen, C. & Tan, K. scATAC-pro: a comprehensive workbench for single-cell chromatin accessibility sequencing data. Genome Biol. 21, 94 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kim, W. et al. Systematic and quantitative assessment of the ubiquitin-modified proteome. Mol. Cell 44, 325–340 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Udeshi, N. D. et al. Refined preparation and use of anti-diglycine remnant (K-ε-GG) antibody enables routine quantification of 10,000s of ubiquitination sites in single proteomics experiments. Mol. Cell. Proteom. 12, 825–831 (2013).

    CAS 

    Google Scholar 

  • Wagner, S. A. et al. A proteome-wide, quantitative survey of in vivo ubiquitylation sites reveals widespread regulatory roles. Mol. Cell. Proteom. 10, M111.013284 (2011).

    Google Scholar 

  • Mertins, P. et al. Integrated proteomic analysis of post-translational modifications by serial enrichment. Nat. Methods 10, 634–637 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vasaikar, S. V., Straub, P., Wang, J. & Zhang, B. LinkedOmics: analyzing multi-omics data within and across 32 cancer types. Nucleic Acids Res. 46, D956–D963 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Wu, P. et al. Integration and analysis of CPTAC proteomics data in the context of cancer genomics in the cBioPortal. Mol. Cell. Proteom. 18, 1893–1898 (2019).

    CAS 

    Google Scholar 

  • Lindgren, C. M. et al. Simplified and unified access to cancer proteogenomic data. J. Proteome Res. 20, 1902–1910 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sharma, V. et al. Panorama: a targeted proteomics knowledge base. J. Proteome Res. 13, 4205–4210 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • MacLean, B. et al. Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics 26, 966–968 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tyanova, S., Temu, T. & Cox, J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat. Protoc. 11, 2301–2319 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Geiszler, D. J. et al. PTM-shepherd: analysis and summarization of post-translational and chemical modifications from open search results. Mol. Cell. Proteom. 20, 100018 (2020).

    Google Scholar 

  • Yu, F. et al. Fast quantitative analysis of timstof PASEF data with MSFragger and IonQuant. Mol. Cell. Proteom. 19, 1575–1585 (2020).

    CAS 

    Google Scholar 

  • Yu, F., Haynes, S. E. & Nesvizhskii, A. I. IonQuant enables accurate and sensitive label-free quantification with FDR-controlled match-between-runs. Mol. Cell. Proteom. 20, 100077 (2021).

    CAS 

    Google Scholar 

  • Shi, Z., Wang, J. & Zhang, B. NetGestalt: integrating multidimensional omics data over biological networks. Nat. Methods 10, 597–598 (2013). This work presents a network analysis and visualization tool supporting analysis of multi-omics data in a web-based, easy to use, interface.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Petralia, F. et al. A new method for constructing tumor specific gene co-expression networks based on samples with tumor purity heterogeneity. Bioinformatics 34, i528–i536 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tyanova, S. et al. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods 13, 731–740 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Tyanova, S. & Cox, J. Perseus: a bioinformatics platform for integrative analysis of proteomics data in cancer research. Methods Mol. Biol. 1711, 133–148 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Wen, B., Wang, X. & Zhang, B. PepQuery enables fast, accurate, and convenient proteomic validation of novel genomic alterations. Genome Res. 29, 485–493 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wen, B., Li, K., Zhang, Y. & Zhang, B. Cancer neoantigen prioritization through sensitive and reliable proteogenomics analysis. Nat. Commun. 11, 1759 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liao, Y., Wang, J., Jaehnig, E. J., Shi, Z. & Zhang, B. WebGestalt 2019: gene set analysis toolkit with revamped UIs and APIs. Nucleic Acids Res. 47, W199–W205 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rudolph, J. D., de Graauw, M., van de Water, B., Geiger, T. & Sharan, R. Elucidation of signaling pathways from large-scale phosphoproteomic data using protein interaction networks. Cell Syst. 3, 585–593.e3 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Huang, K.-L. et al. Spatially interacting phosphorylation sites and mutations in cancer. Nat. Commun. 12, 2313 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Blumenberg, L. et al. BlackSheep: a Bioconductor and Bioconda package for differential extreme value analysis. J. Proteome Res. 20, 3767–3773 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Martens, M. et al. WikiPathways: connecting communities. Nucleic Acids Res. 49, D613–D621 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Source link