Preloader

Biotechnological development of plants for space agriculture

  • 1.

    Wheeler, R. M. Potato and human exploration of space: some observations from NASA-sponsored controlled environment studies. Potato Res. 49, 67–90 (2006).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 2.

    Zhang, C. et al. Genome design of hybrid potato. Cell 184, 3873–3883 (2021).

    CAS 
    Article 

    Google Scholar 

  • 3.

    Itkin, M. et al. Biosynthesis of antinutritional alkaloids in solanaceous crops is mediated by clustered genes. Science 341, 175–179 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 4.

    Akiyama, R. et al. The biosynthetic pathway of potato solanidanes diverged from that of spirosolanes due to evolution of a dioxygenase. Nat. Commun. 12, 1300 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 5.

    Cardenas, P. D. et al. GAME9 regulates the biosynthesis of steroidal alkaloids and upstream isoprenoids in the plant mevalonate pathway. Nat. Commun. 7, 10654 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 6.

    You, Y. & van Kan, J. A. Bitter and sweet make tomato hard to (b) eat. New Phytol. 230, 90–100 (2021).

    CAS 
    Article 

    Google Scholar 

  • 7.

    Bychkov, A., Reshetnikova, P., Bychkova, E., Podgorbunskikh, E. & Koptev, V. The current state and future trends of space nutrition from a perspective of astronauts’ physiology. Int. J. Gastronomy Food Sci. 24, 100324 (2021).

    Article 

    Google Scholar 

  • 8.

    Cooper, M., Perchonok, M. & Douglas, G. L. Initial assessment of the nutritional quality of the space food system over three years of ambient storage. NPJ Microgravity. 3, 17 (2017).

    Article 

    Google Scholar 

  • 9.

    Upadhyaya, C. P. & Bagri, D. S. Biotechnological Approaches for Nutritional Improvement in Potato (Solanum tuberosum L.). Genome Engineering for Crop Improvement, 253–280 (John Wiley & Sons Ltd. 2021).

  • 10.

    Zhu, Q. et al. Plant synthetic metabolic engineering for enhancing crop nutritional quality. Plant Commun. 1, 100017 (2020).

    Article 

    Google Scholar 

  • 11.

    Dutt, S. et al. Key players associated with tuberization in potato: potential candidates for genetic engineering. CRIT Rev. Biotechnol. 37, 942–957 (2017).

    CAS 
    Article 

    Google Scholar 

  • 12.

    Bailey-Serres, J., Parker, J. E., Ainsworth, E. A., Oldroyd, G. E. & Schroeder, J. I. Genetic strategies for improving crop yields. Nature 575, 109–118 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 13.

    Nölke, G., Houdelet, M., Kreuzaler, F., Peterhänsel, C. & Schillberg, S. The expression of a recombinant glycolate dehydrogenase polyprotein in potato (Solanum tuberosum) plastids strongly enhances photosynthesis and tuber yield. Plant Biotechnol. J. 12, 734–742 (2014).

    Article 

    Google Scholar 

  • 14.

    Yu, Q. et al. RNA demethylation increases the yield and biomass of rice and potato plants in field trials. Nat. Biotechnol. (2021).

  • 15.

    Snyder, R. & Tegeder, M. Targeting nitrogen metabolism and transport processes to improve plant nitrogen use efficiency. Front. Plant Sci. 11, 628366 (2021).

    Article 

    Google Scholar 

  • 16.

    Steinwand, M. A. & Ronald, P. C. Crop biotechnology and the future of food. Nat. Food 1, 273–283 (2020).

    Article 

    Google Scholar 

  • 17.

    Wang, Y. & Wu, W. Genetic approaches for improvement of the crop potassium acquisition and utilization efficiency. Curr. Opin. Plant Biol. 25, 46–52 (2015).

    Article 

    Google Scholar 

  • 18.

    Tibbetts, J. H. Gardening of the future—from outer to urban space: moving from freeze-dried ice cream to fresh-picked salad greens. Bioscience 69, 962–968 (2019).

    Article 

    Google Scholar 

  • Source link