Preloader

Biosynthesis of iron oxide magnetic nanoparticles using clinically isolated Pseudomonas aeruginosa

  • 1.

    Bazylinski, D. A. & Frankel, R. B. Magnetosome formation in prokaryotes. Nat. Rev. Microbiol. 2, 217–230 (2004).

    CAS 
    Article 

    Google Scholar 

  • 2.

    Bellini, S. & Bellini, S. Further studies on “magnetosensitive bacteria”. Chin. J. Oceanol. Limnol. 27, 6–12 (2009).

    ADS 
    Article 

    Google Scholar 

  • 3.

    Bazylinski, D. A., Lefèvre, C. T. & Schüler, D. Magnetotactic bacteria. Prokaryotes: Prokaryotic Physiol. Biochem. 190, 453–494 (2013).

    Article 

    Google Scholar 

  • 4.

    Talib, A. et al. Respiring cellular nano-magnets. Mater. Sci. Eng. C 80, 526–531 (2017).

    CAS 
    Article 

    Google Scholar 

  • 5.

    Lower, B. H. & Bazylinski, D. A. The bacterial magnetosome: A unique prokaryotic organelle. J. Mol. Microbiol. Biotechnol. 23, 63–80 (2013).

    CAS 
    Article 

    Google Scholar 

  • 6.

    Komeili, A. Molecular mechanisms of compartmentalization and biomineralization in magnetotactic bacteria. FEMS Microbiol. Rev. 36, 232–255 (2012).

    CAS 
    Article 

    Google Scholar 

  • 7.

    Frankel, R. B. Biologically induced mineralization by bacteria. Rev. Mineral. Geochem. 54, 95–114 (2005).

    Article 

    Google Scholar 

  • 8.

    Józefczak, A., Leszczyński, B., Skumiel, A. & Hornowski, T. A comparison between acoustic properties and heat effects in biogenic (magnetosomes) and abiotic magnetite nanoparticle suspensions. J. Magn. Magn. Mater. 407, 92–100 (2016).

    ADS 
    Article 

    Google Scholar 

  • 9.

    Jacob, J. J. & Suthindhiran, K. Magnetotactic bacteria and magnetosomes—scope and challenges. Mater. Sci. Eng., C 68, 919–928 (2016).

    CAS 
    Article 

    Google Scholar 

  • 10.

    Lefèvre, C. T. et al. Monophyletic origin of magnetotaxis and the first magnetosomes. Environ. Microbiol. 15, 2267–2274 (2013).

    Article 

    Google Scholar 

  • 11.

    Vasil, M. L. & Ochsner, U. A. The response of Pseudomonas aeruginosa to iron: genetics, biochemistry and virulence. Mol. Microbiol. 34, 399–413 (1999).

    CAS 
    Article 

    Google Scholar 

  • 12.

    Uzun, M., Alekseeva, L., Krutkina, M., Koziaeva, V. & Grouzdev, D. Unravelling the diversity of magnetotactic bacteria through analysis of open genomic databases. Sci. Data 7, 252 (2020).

    Article 

    Google Scholar 

  • 13.

    Ochsner, U. A., Johnson, Z. & Vasil, M. L. Genetics and regulation of two distinct haem-uptake systems, phu and has, Pseudomonas aeruginosa. Microbiology 146, 185–198 (2000).

    CAS 
    Article 

    Google Scholar 

  • 14.

    Alontaga, A. Y. et al. Structural characterization of the hemophore HasAp from pseudomonas aeruginosa: NMR spectroscopy reveals protein-protein interactions between holo-HasAp and hemoglobin. Biochemistry 48, 96–109 (2009).

    CAS 
    Article 

    Google Scholar 

  • 15.

    Cornelis, P. Iron uptake and metabolism in pseudomonads. Appl. Microbiol. Biotechnol. 86, 1637–1645 (2010).

    CAS 
    Article 

    Google Scholar 

  • 16.

    Cox, C. D. & Parker, J. Use of 2-aminoacetophenone production in identification of Pseudomonas aeruginosa. J. Clin. Microbiol. 9, 479–484 (1979).

    CAS 
    Article 

    Google Scholar 

  • 17.

    Uebe, R. et al. The cation diffusion facilitator proteins MamB and MamM of magnetospirillum gryphiswaldense have distinct and complex functions, and are involved in magnetite biomineralization and magnetosome membrane assembly. Mol. Microbiol. 82, 818–835 (2011).

    CAS 
    Article 

    Google Scholar 

  • 18.

    Uebe, R. et al. The dual role of MamB in magnetosome membrane assembly and magnetite biomineralization. Mol. Microbiol. 107, 542–557 (2018).

    CAS 
    Article 

    Google Scholar 

  • 19.

    Lefèvre, C. T. & Wu, L. F. Evolution of the bacterial organelle responsible for magnetotaxis. Trends Microbiol. 21, 534–543 (2013).

    Article 

    Google Scholar 

  • 20

    Rahn-Lee, L. & Komeili, A. The magnetosome model: insights into the mechanisms of bacterial biomineralization. Front. Microbiol. 4, 352 (2013).

    Article 

    Google Scholar 

  • 21.

    Silverman, M. P. & Lundgren, D. G. Studies on the chemoautotrophic iron bacterium Ferrobacillus ferrooxidans. I. An improved medium and a harvesting procedure for securing high cell yields. J. Bacteriol. 77, 642–647 (1959).

    CAS 
    Article 

    Google Scholar 

  • 22.

    Iravani, S. Bacteria in Nanoparticle Synthesis: Current Status And Future Prospects. Int. Sch. Res. Not. 2014, 1–18 (2014).

    Article 

    Google Scholar 

  • 23.

    Bazylinski, D. A. Biologically controlled mineralization in prokaryotes. Rev. Mineral. Geochem. 54, 217–247 (2003).

    CAS 
    Article 

    Google Scholar 

  • 24

    Attia, M. & Eida, M. Magnetotactic characterization and environmental application P. aeruginosa magnetotactic characterization and environmental application P. aeruginosa kb1 Isolate. Ann. Rev. Biol. https://doi.org/10.9734/ARRB/2017/37737 (2017).

    Article 

    Google Scholar 

  • 25.

    Amann, R., Peplies, J. & Schüler, D. Diversity and Taxonomy of Magnetotactic Bacteria. in Magnetoreception and Magnetosomes in Bacteria (ed. Schüler, D.) 25–36 (Springer Berlin Heidelberg, 2007). https://doi.org/10.1007/7171_037.

  • 26.

    Murat, D. et al. The magnetosome membrane protein, MmsF, is a major regulator of magnetite biomineralization in Magnetospirillum magneticum AMB-1. Mol. Microbiol. 85, 684–699 (2012).

    CAS 
    Article 

    Google Scholar 

  • 27.

    McCausland, H. C. & Komeili, A. Magnetic genes: Studying the genetics of biomineralization in magnetotactic bacteria. PLoS Genet. 16, e1008499 (2020).

    Article 

    Google Scholar 

  • 28.

    Yan, L., Da, H., Zhang, S., López, V. M. & Wang, W. Bacterial magnetosome and its potential application. Microbiol. Res. 203, 19–28 (2017).

    CAS 
    Article 

    Google Scholar 

  • 29.

    Lins, U. & Farina, M. Magnetosome size distribution in uncultured rod-shaped bacteria as determined by electron microscopy and electron spectroscopic imaging. Microsc. Res. Tech. 42, 459–464 (1998).

    CAS 
    Article 

    Google Scholar 

  • 30.

    Pennycook, T. J., Martinez, G. T., Nellist, P. D. & Meyer, J. C. High dose efficiency atomic resolution imaging via electron ptychography. Ultramicroscopy 196, 131–135 (2019).

    CAS 
    Article 

    Google Scholar 

  • 31.

    Golding, C. G., Lamboo, L. L., Beniac, D. R. & Booth, T. F. The scanning electron microscope in microbiology and diagnosis of infectious disease. Sci. Rep. 6, 1–8 (2016).

    Article 

    Google Scholar 

  • 32.

    Liu, Y., Gao, M., Dai, S., Peng, K. & Jia, R. Characterization of magnetotactic bacteria and their magnetosomes isolated from Tieshan iron ore in Hubei Province of China. Mater. Sci. Eng. C 26, 597–601 (2006).

    Article 

    Google Scholar 

  • 33.

    Wu, W., He, Q. & Jiang, C. Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res. Lett. 3, 397 (2008).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 34.

    Fischer, A., Schmitz, M., Aichmayer, B., Fratzl, P. & Faivre, D. Structural purity of magnetite nanoparticles in magnetotactic bacteria. J. R. Soc. Interface 8, 1011–1018 (2011).

    CAS 
    Article 

    Google Scholar 

  • 35.

    Cabrera, L., Gutierrez, S., Menendez, N., Morales, M. P. & Herrasti, P. Magnetite nanoparticles: electrochemical synthesis and characterization. Electrochim. Acta 53, 3436–3441 (2008).

    CAS 
    Article 

    Google Scholar 

  • 36.

    Mahdavi, M. et al. Synthesis, surface modification and characterisation of biocompatible magnetic iron oxide nanoparticles for biomedical applications. Molecules 18, 7533–7548 (2013).

    CAS 
    Article 

    Google Scholar 

  • 37.

    Talib, A., Khan, A. A., Ahmed, H. & Jilani, G. The nano-magnetic dancing of Bacteria Hand-in-Hand with oxygen. Braz. Arch. Biol. Technol. 60, 1–5 (2017).

    Article 

    Google Scholar 

  • 38.

    Khan, S., Akhtar, M. U., Khan, S., Javed, F. & Khan, A. A. Nanoniosome-encapsulated levoflaxicin as an antibacterial agent against Brucella. J. Basic Microbiol. 60, 281–290 (2020).

    CAS 
    Article 

    Google Scholar 

  • 39.

    Ribeiro, J. C. et al. Efficiency of boiling and four other methods for genomic DNA extraction of deteriorating spore-forming bacteria from milk. Semin. Agrar. 37, 3069–3078 (2016).

    CAS 
    Article 

    Google Scholar 

  • Source link