Bazylinski, D. A. & Frankel, R. B. Magnetosome formation in prokaryotes. Nat. Rev. Microbiol. 2, 217–230 (2004).
Google Scholar
Bellini, S. & Bellini, S. Further studies on “magnetosensitive bacteria”. Chin. J. Oceanol. Limnol. 27, 6–12 (2009).
Google Scholar
Bazylinski, D. A., Lefèvre, C. T. & Schüler, D. Magnetotactic bacteria. Prokaryotes: Prokaryotic Physiol. Biochem. 190, 453–494 (2013).
Google Scholar
Talib, A. et al. Respiring cellular nano-magnets. Mater. Sci. Eng. C 80, 526–531 (2017).
Google Scholar
Lower, B. H. & Bazylinski, D. A. The bacterial magnetosome: A unique prokaryotic organelle. J. Mol. Microbiol. Biotechnol. 23, 63–80 (2013).
Google Scholar
Komeili, A. Molecular mechanisms of compartmentalization and biomineralization in magnetotactic bacteria. FEMS Microbiol. Rev. 36, 232–255 (2012).
Google Scholar
Frankel, R. B. Biologically induced mineralization by bacteria. Rev. Mineral. Geochem. 54, 95–114 (2005).
Google Scholar
Józefczak, A., Leszczyński, B., Skumiel, A. & Hornowski, T. A comparison between acoustic properties and heat effects in biogenic (magnetosomes) and abiotic magnetite nanoparticle suspensions. J. Magn. Magn. Mater. 407, 92–100 (2016).
Google Scholar
Jacob, J. J. & Suthindhiran, K. Magnetotactic bacteria and magnetosomes—scope and challenges. Mater. Sci. Eng., C 68, 919–928 (2016).
Google Scholar
Lefèvre, C. T. et al. Monophyletic origin of magnetotaxis and the first magnetosomes. Environ. Microbiol. 15, 2267–2274 (2013).
Google Scholar
Vasil, M. L. & Ochsner, U. A. The response of Pseudomonas aeruginosa to iron: genetics, biochemistry and virulence. Mol. Microbiol. 34, 399–413 (1999).
Google Scholar
Uzun, M., Alekseeva, L., Krutkina, M., Koziaeva, V. & Grouzdev, D. Unravelling the diversity of magnetotactic bacteria through analysis of open genomic databases. Sci. Data 7, 252 (2020).
Google Scholar
Ochsner, U. A., Johnson, Z. & Vasil, M. L. Genetics and regulation of two distinct haem-uptake systems, phu and has, Pseudomonas aeruginosa. Microbiology 146, 185–198 (2000).
Google Scholar
Alontaga, A. Y. et al. Structural characterization of the hemophore HasAp from pseudomonas aeruginosa: NMR spectroscopy reveals protein-protein interactions between holo-HasAp and hemoglobin. Biochemistry 48, 96–109 (2009).
Google Scholar
Cornelis, P. Iron uptake and metabolism in pseudomonads. Appl. Microbiol. Biotechnol. 86, 1637–1645 (2010).
Google Scholar
Cox, C. D. & Parker, J. Use of 2-aminoacetophenone production in identification of Pseudomonas aeruginosa. J. Clin. Microbiol. 9, 479–484 (1979).
Google Scholar
Uebe, R. et al. The cation diffusion facilitator proteins MamB and MamM of magnetospirillum gryphiswaldense have distinct and complex functions, and are involved in magnetite biomineralization and magnetosome membrane assembly. Mol. Microbiol. 82, 818–835 (2011).
Google Scholar
Uebe, R. et al. The dual role of MamB in magnetosome membrane assembly and magnetite biomineralization. Mol. Microbiol. 107, 542–557 (2018).
Google Scholar
Lefèvre, C. T. & Wu, L. F. Evolution of the bacterial organelle responsible for magnetotaxis. Trends Microbiol. 21, 534–543 (2013).
Google Scholar
Rahn-Lee, L. & Komeili, A. The magnetosome model: insights into the mechanisms of bacterial biomineralization. Front. Microbiol. 4, 352 (2013).
Google Scholar
Silverman, M. P. & Lundgren, D. G. Studies on the chemoautotrophic iron bacterium Ferrobacillus ferrooxidans. I. An improved medium and a harvesting procedure for securing high cell yields. J. Bacteriol. 77, 642–647 (1959).
Google Scholar
Iravani, S. Bacteria in Nanoparticle Synthesis: Current Status And Future Prospects. Int. Sch. Res. Not. 2014, 1–18 (2014).
Google Scholar
Bazylinski, D. A. Biologically controlled mineralization in prokaryotes. Rev. Mineral. Geochem. 54, 217–247 (2003).
Google Scholar
Attia, M. & Eida, M. Magnetotactic characterization and environmental application P. aeruginosa magnetotactic characterization and environmental application P. aeruginosa kb1 Isolate. Ann. Rev. Biol. https://doi.org/10.9734/ARRB/2017/37737 (2017).
Google Scholar
Amann, R., Peplies, J. & Schüler, D. Diversity and Taxonomy of Magnetotactic Bacteria. in Magnetoreception and Magnetosomes in Bacteria (ed. Schüler, D.) 25–36 (Springer Berlin Heidelberg, 2007). https://doi.org/10.1007/7171_037.
Murat, D. et al. The magnetosome membrane protein, MmsF, is a major regulator of magnetite biomineralization in Magnetospirillum magneticum AMB-1. Mol. Microbiol. 85, 684–699 (2012).
Google Scholar
McCausland, H. C. & Komeili, A. Magnetic genes: Studying the genetics of biomineralization in magnetotactic bacteria. PLoS Genet. 16, e1008499 (2020).
Google Scholar
Yan, L., Da, H., Zhang, S., López, V. M. & Wang, W. Bacterial magnetosome and its potential application. Microbiol. Res. 203, 19–28 (2017).
Google Scholar
Lins, U. & Farina, M. Magnetosome size distribution in uncultured rod-shaped bacteria as determined by electron microscopy and electron spectroscopic imaging. Microsc. Res. Tech. 42, 459–464 (1998).
Google Scholar
Pennycook, T. J., Martinez, G. T., Nellist, P. D. & Meyer, J. C. High dose efficiency atomic resolution imaging via electron ptychography. Ultramicroscopy 196, 131–135 (2019).
Google Scholar
Golding, C. G., Lamboo, L. L., Beniac, D. R. & Booth, T. F. The scanning electron microscope in microbiology and diagnosis of infectious disease. Sci. Rep. 6, 1–8 (2016).
Google Scholar
Liu, Y., Gao, M., Dai, S., Peng, K. & Jia, R. Characterization of magnetotactic bacteria and their magnetosomes isolated from Tieshan iron ore in Hubei Province of China. Mater. Sci. Eng. C 26, 597–601 (2006).
Google Scholar
Wu, W., He, Q. & Jiang, C. Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res. Lett. 3, 397 (2008).
Google Scholar
Fischer, A., Schmitz, M., Aichmayer, B., Fratzl, P. & Faivre, D. Structural purity of magnetite nanoparticles in magnetotactic bacteria. J. R. Soc. Interface 8, 1011–1018 (2011).
Google Scholar
Cabrera, L., Gutierrez, S., Menendez, N., Morales, M. P. & Herrasti, P. Magnetite nanoparticles: electrochemical synthesis and characterization. Electrochim. Acta 53, 3436–3441 (2008).
Google Scholar
Mahdavi, M. et al. Synthesis, surface modification and characterisation of biocompatible magnetic iron oxide nanoparticles for biomedical applications. Molecules 18, 7533–7548 (2013).
Google Scholar
Talib, A., Khan, A. A., Ahmed, H. & Jilani, G. The nano-magnetic dancing of Bacteria Hand-in-Hand with oxygen. Braz. Arch. Biol. Technol. 60, 1–5 (2017).
Google Scholar
Khan, S., Akhtar, M. U., Khan, S., Javed, F. & Khan, A. A. Nanoniosome-encapsulated levoflaxicin as an antibacterial agent against Brucella. J. Basic Microbiol. 60, 281–290 (2020).
Google Scholar
Ribeiro, J. C. et al. Efficiency of boiling and four other methods for genomic DNA extraction of deteriorating spore-forming bacteria from milk. Semin. Agrar. 37, 3069–3078 (2016).
Google Scholar

