Preloader

Biomimetic models of the glomerulus

  • 1.

    Kambham, N., Markowitz, G. S., Valeri, A. M., Lin, J. & D’Agati, V. D. Obesity-related glomerulopathy: an emerging epidemic. Kidney Int. 59, 1498–1509 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • 2.

    Saran, R. et al. US Renal Data System 2018 annual data report: epidemiology of kidney disease in the United States. Am. J. Kidney Dis. 73, A7–A8 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 3.

    Naqvi, R. Glomerulonephritis contributing to chronic kidney disease. Urol. Nephrol. Open Access. J. 5(4), 00179 (2017).

    Google Scholar 

  • 4.

    Ziółkowska, H., Adamczuk, D., Leszczyńska, B. & Roszkowska-Blaim, M. Glomerulopathies as causes of end-stage renal disease in children [Polish]. Pol. Merkur. Lekarski. 26, 301–305 (2009).

    PubMed 

    Google Scholar 

  • 5.

    Moxey-Mims, M. M. et al. Glomerular diseases: registries and clinical trials. Clin. J. Am. Soc. Nephrol. 11, 2234–2243 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 6.

    Petrosyan, A. et al. A glomerulus-on-a-chip to recapitulate the human glomerular filtration barrier. Nat. Commun. 10, 3656 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 7.

    Bonventre, J. V., Vaidya, V. S., Schmouder, R., Feig, P. & Dieterle, F. Next-generation biomarkers for detecting kidney toxicity. Nat. Biotechnol. 28, 436–440 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 8.

    Cieslinski, D. A. & David Humes, H. Tissue engineering of a bioartificial kidney. Biotechnol. Bioeng. 43, 678–681 (1994).

    CAS 
    PubMed 

    Google Scholar 

  • 9.

    Musah, S., Dimitrakakis, N., Camacho, D. M., Church, G. M. & Ingber, D. E. Directed differentiation of human induced pluripotent stem cells into mature kidney podocytes and establishment of a glomerulus chip. Nat. Protoc. 13, 1662–1685 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 10.

    Sánchez-Romero, N., Schophuizen, C. M. S., Giménez, I. & Masereeuw, R. In vitro systems to study nephropharmacology: 2D versus 3D models. Eur. J. Pharmacol. 790, 36–45 (2016).

    PubMed 

    Google Scholar 

  • 11.

    Vimtrup, B. On the number, shape, structure, and surface area of the glomeruli in the kidneys of man and mammals. Am. J. Anat. 41, 123–151 (1928).

    Google Scholar 

  • 12.

    D’Amico, G. & Bazzi, C. Pathophysiology of proteinuria. Kidney Int. 63, 809–825 (2003).

    PubMed 

    Google Scholar 

  • 13.

    Neal, C. R. et al. Novel hemodynamic structures in the human glomerulus. Am. J. Physiol. -Ren. Physiol. 315, F1370–F1384 (2018).

    Google Scholar 

  • 14.

    Capasso, G., Trepiccione, F. & Zacchia, M. in Critical Care Nephrology 3rd edn Ch. 8 (eds Ronco, C., Bellomo, R., Kellum, J. A. & Ricci, Z.) 42–48.e1 (Elsevier, 2019).

  • 15.

    Arendshorst, W. J. & Bello-Reuss, E. in Handbook of Cell Signaling 2nd edn Ch. 318 (eds Bradshaw, R. A. & Dennis, E. A.) 2707–2731 (Academic, 2010).

  • 16.

    Maezawa, Y., Cina, D. & Quaggin, S. E. in Seldin and Giebisch’s The Kidney 5th edn Ch. 22 (eds Alpern, R. J., Moe, O. W. & Caplan, M.) 721–755 (Academic, 2013).

  • 17.

    Miner, J. H. Renal basement membrane components. Kidney Int. 56, 2016–2024 (1999).

    CAS 
    PubMed 

    Google Scholar 

  • 18.

    Rabelink, T. J., Heerspink, H. J. L. & de Zeeuw, D. in Chronic Renal Disease Ch. 9 (eds Kimmel, P. L. & Rosenberg, M. E.) 92–105 (Academic, 2015).

  • 19.

    Chung, J. J. et al. Single-cell transcriptome profiling of the kidney glomerulus identifies key cell types and reactions to injury. J. Am. Soc. Nephrol. 31, 2341–2354 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 20.

    Karaiskos, N. et al. A single-cell transcriptome atlas of the mouse glomerulus. J. Am. Soc. Nephrol. 29, 2060–2068 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 21.

    Arar, M. et al. Platelet-derived growth factor receptor β regulates migration and DNA synthesis in metanephric mesenchymal cells. J. Biol. Chem. 275, 9527–9533 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • 22.

    Kamel, K. S. & Halperin, M. L. in Fluid, Electrolyte and Acid-Base Physiology 5th edn Ch. 9 (eds Kamel, K. S. & Halperin, M. L.) 215–263 (Elsevier, 2017).

  • 23.

    Iversen, B. M. & Ofstad, J. The effect of hypertension on glomerular structures and capillary permeability in passive Heymann glomerulonephritis. Microvascular Res. 34, 137–151 (1987).

    CAS 

    Google Scholar 

  • 24.

    Briggs, J. P., Kriz, W. & Schnermann, J. B. in National Kidney Foundation’s Primer on Kidney Diseases 6th edn (eds Gilbert, S. J., Weiner, D. E., Gipson, D. S., Perazella, M. A. & Tonelli, M.) 2–18 (Elsevier, 2014).

  • 25.

    Satchell, S. C. & Braet, F. Glomerular endothelial cell fenestrations: an integral component of the glomerular filtration barrier. Am. J. Physiol. Ren. Physiol. 296, F947–F956 (2009).

    CAS 

    Google Scholar 

  • 26.

    Haraldsson, B. & Nyström, J. The glomerular endothelium: new insights on function and structure. Curr. Opin. Nephrol. Hypertens. 21, 258–263 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • 27.

    Dean, D. F. & Molitoris, B. A. in Critical Care Nephrology 3rd edn Ch. 7 (eds Ronco, C., Bellomo, R., Kellum, J. A. & Ricci, Z.) 35–42.e2 (Elsevier, 2019).

  • 28.

    Pollak, M. R., Quaggin, S. E., Hoenig, M. P. & Dworkin, L. D. The glomerulus: the sphere of influence. Clin. J. Am. Soc. Nephrol. 9, 1461–1469 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 29.

    Abrahamson, D. R., st. John, P. L., Stroganova, L., Zelenchuk, A. & Steenhard, B. M. Laminin and type IV collagen isoform substitutions occur in temporally and spatially distinct patterns in developing kidney glomerular basement membranes. J. Histochem. Cytochem. 61, 706–718 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 30.

    Feher, J. Quantitative Human Physiology 2nd edn 705–714 (Academic, 2017).

  • 31.

    Garg, P. A review of podocyte biology. Am. J. Nephrol. 47, 3–13 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 32.

    Oddsson, Á., Patrakka, J. & Tryggvason, K. Glomerular filtration barrier: From Molecular Biology to Regulation Mechanisms. Reference Module in Biomedical Sciences (Elsevier, 2014).

  • 33.

    Garg, P. & Rabelink, T. Glomerular proteinuria: a complex interplay between unique players. Adv. Chronic Kidney Dis. 18, 233–242 (2011).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 34.

    Moorthy, A. V. & Blichfeldt, T. C. in Pathophysiology of Kidney Disease and Hypertension (ed. Moorthy, A. V.) 1–15 (Saunders, 2009).

  • 35.

    Reiser, J. & Altintas, M. M. Podocytes. F1000Res. 5, 114 (2016).

    Google Scholar 

  • 36.

    Kriz, W. & Elger, M. in Comprehensive Clinical Nephrology 4th edn Ch. 1 (eds Floege, J., Johnson, R. J. & Feehally, J.) 3–14 (Mosby, 2010).

  • 37.

    Nikolic, M., Sustersic, T. & Filipovic, N. In vitro models and on-chip systems: biomaterial interaction studies with tissues generated using lung epithelial and liver metabolic cell lines. Front. Bioeng. Biotechnol. 6, 120 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 38.

    Wang, K., Shindoh, H., Inoue, T. & Horii, I. Advantages of in vitro cytotoxicity testing by using primary rat hepatocytes in comparison with established cell lines. J. Toxicol. Sci. 27, 229–237 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • 39.

    Wragg, N. M., Burke, L. & Wilson, S. L. A critical review of current progress in 3D kidney biomanufacturing: advances, challenges, and recommendations. Ren. Replace. Ther. 5, 18 (2019).

    Google Scholar 

  • 40.

    Ali, M. et al. A photo-crosslinkable kidney ECM-derived bioink accelerates renal tissue formation. Adv. Healthc. Mater. 8, e1800992 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 41.

    Slater, S. C. et al. An in vitro model of the glomerular capillary wall using electrospun collagen nanofibres in a bioartificial composite basement membrane. PLoS ONE 6, e20802 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 42.

    Li, Z. et al. Solution fibre spinning technique for the fabrication of tuneable decellularised matrix-laden fibres and fibrous micromembranes. Acta Biomater. 78, 111–122 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 43.

    Tuffin, J. et al. A composite hydrogel scaffold permits self-organization and matrix deposition by cocultured human glomerular cells. Adv. Healthc. Mater. 8, 1900698 (2019).

    Google Scholar 

  • 44.

    Waters, J. P. et al. A 3D tri-culture system reveals that activin receptor-like kinase 5 and connective tissue growth factor drive human glomerulosclerosis. J. Pathol. 243, 390–400 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 45.

    Musah, S. et al. Mature induced-pluripotent-stem-cell-derived human podocytes reconstitute kidney glomerular-capillary-wall function on a chip. Nat. Biomed. Eng. 1, 0069 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 46.

    Becker, G. J. & Hewitson, T. D. Animal models of chronic kidney disease: useful but not perfect. Nephrol. Dial. Transplant. 28, 2432–2438 (2013).

    PubMed 

    Google Scholar 

  • 47.

    Hewitson, T. D., Ono, T. & Becker, G. J. Small animal models of kidney disease: a review. Methods Mol. Biol. 466, 41–57 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • 48.

    Shankland, S. J. The podocyte’s response to injury: role in proteinuria and glomerulosclerosis. Kidney Int. 69, 2131–2147 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • 49.

    Shankland, S. J., Pippin, J. W., Reiser, J. & Mundel, P. Podocytes in culture: past, present, and future. Kidney Int. 72, 26–36 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • 50.

    Yoshimura, Y. et al. Manipulation of nephron-patterning signals enables selective induction of podocytes from human pluripotent stem cells. J. Am. Soc. Nephrol. 30, 304–321 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 51.

    Hale, L. J. et al. 3D organoid-derived human glomeruli for personalised podocyte disease modelling and drug screening. Nat. Commun. 9, 5167 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 52.

    Higgins, J. W. et al. Bioprinted pluripotent stem cell-derived kidney organoids provide opportunities for high content screening. Preprint at bioRxiv https://doi.org/10.1101/505396 (2018).

    Article 

    Google Scholar 

  • 53.

    Edmondson, R., Broglie, J. J., Adcock, A. F. & Yang, L. Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors. Assay. Drug Dev. Technol. 12, 207–218 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 54.

    Chaicharoenaudomrung, N., Kunhorm, P. & Noisa, P. Three-dimensional cell culture systems as an in vitro platform for cancer and stem cell modeling. World J. Stem Cell 11, 1065–1083 (2019).

    Google Scholar 

  • 55.

    Schmid, J. et al. A perfusion bioreactor system for cell seeding and oxygen-controlled cultivation of three-dimensional cell cultures. Tissue Eng. Part C. Methods 24, 585–595 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 56.

    Lovett, M., Lee, K., Edwards, A. & Kaplan, D. L. Vascularization strategies for tissue engineering. Tissue Eng. Part B Rev. 15, 353–370 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 57.

    Wu, H. & Humphreys, B. D. Single cell sequencing and kidney organoids generated from pluripotent stem cells. Clin. J. Am. Soc. Nephrol. 15, 550–556 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 58.

    Pebworth, M.-P., Cismas, S. A. & Asuri, P. A novel 2.5D culture platform to investigate the role of stiffness gradients on adhesion-independent cell migration. PLoS ONE 9, e110453 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 59.

    Langhans, S. A. Three-dimensional in vitro cell culture models in drug discovery and drug repositioning. Front. Pharmacol. 9, 6 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 60.

    Reiser, J. & Sever, S. Podocyte biology and pathogenesis of kidney disease. Annu. Rev. Med. 64, 357–366 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 61.

    Jang, K. J. & Suh, K. Y. A multi-layer microfluidic device for efficient culture and analysis of renal tubular cells. Lab. Chip 10, 36–42 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • 62.

    Friedrich, C., Endlich, N., Kriz, W. & Endlich, K. Podocytes are sensitive to fluid shear stress in vitro. Am. J. Physiol. Ren. Physiol. 291, F856–F865 (2006).

    CAS 

    Google Scholar 

  • 63.

    Wang, L. et al. A disease model of diabetic nephropathy in a glomerulus-on-a-chip microdevice. Lab. Chip 17, 1749–1760 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 64.

    Xie, R. et al. h-FIBER: microfluidic topographical hollow fiber for studies of glomerular filtration barrier. ACS Cent. Sci. 6, 903–912 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 65.

    Zhou, M. et al. Development of a functional glomerulus at the organ level on a chip to mimic hypertensive nephropathy. Sci. Rep. 6, 31771 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 66.

    Wilmer, M. J. et al. Kidney-on-a-chip technology for drug-induced nephrotoxicity screening. Trends Biotechnol. 34, 156–170 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 67.

    Toda, N. et al. Crucial role of mesangial cell-derived connective tissue growth factor in a mouse model of anti-glomerular basement membrane glomerulonephritis. Sci. Rep. 7, 42114 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 68.

    Tung, C.-W., Hsu, Y.-C., Shih, Y.-H., Chang, P.-J. & Lin, C.-L. Glomerular mesangial cell and podocyte injuries in diabetic nephropathy. Nephrology 23, 32–37 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 69.

    Homan, K. A. et al. Flow-enhanced vascularization and maturation of kidney organoids in vitro. Nat. Methods 16, 255–262 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 70.

    Ashammakhi, N., Wesseling-Perry, K., Hasan, A., Elkhammas, E. & Zhang, Y. S. Kidney-on-a-chip: untapped opportunities. Kidney Int. 94, 1073–1086 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 71.

    Tanyeri, M. & Tay, S. Viable cell culture in PDMS-based microfluidic devices. Methods Cell Biol. 148, 3–33 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 72.

    Gokaltun, A., Yarmush, M. L., Asatekin, A. & Usta, O. B. Recent advances in nonbiofouling PDMS surface modification strategies applicable to microfluidic technology. Technology 5, 1–12 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 73.

    Pourmand, A. et al. Fabrication of whole-thermoplastic normally closed microvalve, micro check valve, and micropump. Sens. Actuators B Chem. 262, 625–636 (2018).

    CAS 

    Google Scholar 

  • 74.

    Novak, R. et al. Robotic fluidic coupling and interrogation of multiple vascularized organ chips. Nat. Biomed. Eng. 4, 407–420 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 75.

    Shaegh, S. A. M. et al. Rapid prototyping of whole-thermoplastic microfluidics with built-in microvalves using laser ablation and thermal fusion bonding. Sens. Actuators B Chem. 255, 100–109 (2018).

    CAS 

    Google Scholar 

  • 76.

    Gomez-Sjoberg, R., Leyrat, A. A., Houseman, B. T., Shokat, K. & Quake, S. R. Biocompatibility and reduced drug absorption of sol-gel-treated poly(dimethyl siloxane) for microfluidic cell culture applications. Anal. Chem. 82, 8954–8960 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • 77.

    Paoli, R. & Samitier, J. Mimicking the kidney: a key role in organ-on-chip development. Micromachines 7, 126 (2016).

    PubMed Central 

    Google Scholar 

  • 78.

    Bhattacharjee, N., Parra-Cabrera, C., Kim, Y. T., Kuo, A. P. & Folch, A. Desktop-stereolithography 3D-printing of a polydimethylsiloxane)-based material with Sylgard-184 properties. Adv. Mater. 30, e1800001 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 79.

    Zhang, Y. S. & Khademhosseini, A. Advances in engineering hydrogels. Science 356, eaaf3627 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 80.

    Lü, S. H. et al. Self-assembly of renal cells into engineered renal tissues in collagen/matrigel scaffold in vitro. J. Tissue Eng. Regen. Med. 6, 786–792 (2012).

    PubMed 

    Google Scholar 

  • 81.

    Wang, P. C. Reconstruction of renal glomerular tissue using collagen vitrigel scaffold. J. Biosci. Bioeng. 99, 529–540 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • 82.

    Pullela, S. R. et al. Permselectivity replication of artificial glomerular basement membranes in nanoporous collagen multilayers. J. Phys. Chem. Lett. 2, 2067–2072 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 83.

    Finesilver, G., Bailly, J., Kahana, M. & Mitrani, E. Kidney derived micro-scaffolds enable HK-2 cells to develop more in-vivo like properties. Exp. Cell Res. 322, 71–80 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 84.

    Du, C. et al. Functional kidney bioengineering with pluripotent stem-cell-derived renal progenitor cells and decellularized kidney scaffolds. Adv. Healthc. Mater. 5, 2080–2091 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 85.

    Singh, N. K. et al. Three-dimensional cell-printing of advanced renal tubular tissue analogue. Biomaterials 232, 119734 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 86.

    Yin, X. et al. Engineering stem cell organoids. Cell Stem Cell 18, 25–38 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 87.

    Freedman, B. S. et al. Modelling kidney disease with CRISPR-mutant kidney organoids derived from human pluripotent epiblast spheroids. Nat. Commun. 6, 8715 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 88.

    Morizane, R. et al. Nephron organoids derived from human pluripotent stem cells model kidney development and injury. Nat. Biotechnol. 33, 1193–1200 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 89.

    Takasato, M. et al. Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature 526, 564–568 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 90.

    Taguchi, A. et al. Redefining the in vivo origin of metanephric nephron progenitors enables generation of complex kidney structures from pluripotent stem cells. Cell Stem Cell 14, 53–67 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 91.

    Bantounas, I. et al. Generation of functioning nephrons by implanting human pluripotent stem cell-derived kidney progenitors. Stem Cell Rep. 10, 766–779 (2018).

    Google Scholar 

  • 92.

    Kim, Y. K. et al. Gene-edited human kidney organoids reveal mechanisms of disease in podocyte development. Stem Cell 35, 2366–2378 (2017).

    CAS 

    Google Scholar 

  • 93.

    Sharmin, S. et al. Human induced pluripotent stem cell-derived podocytes mature into vascularized glomeruli upon experimental transplantation. J. Am. Soc. Nephrol. 27, 1778–1791 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 94.

    van den Berg, C. W. et al. Renal subcapsular transplantation of PSC-derived kidney organoids induces neo-vasculogenesis and significant glomerular and tubular maturation in vivo. Stem Cell Rep. 10, 751–765 (2018).

    Google Scholar 

  • 95.

    Geuens, T., van Blitterswijk, C. A. & LaPointe, V. L. S. Overcoming kidney organoid challenges for regenerative medicine. NPJ Regen. Med. 5, 8 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 96.

    Combes, A. N., Zappia, L., Er, P. X., Oshlack, A. & Little, M. H. Single-cell analysis reveals congruence between kidney organoids and human fetal kidney. Genome Med. 11, 3 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 97.

    Garreta, E. et al. Fine tuning the extracellular environment accelerates the derivation of kidney organoids from human pluripotent stem cells. Nat. Mater. 18, 397–405 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 98.

    Czerniecki, S. M. et al. High-throughput screening enhances kidney organoid differentiation from human pluripotent stem cells and enables automated multidimensional phenotyping. Cell Stem Cell 22, 929–940.e4 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 99.

    Low, J. H. et al. Generation of human PSC-derived kidney organoids with patterned nephron segments and a de novo vascular network. Cell Stem Cell 25, 373–387.e9 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 100.

    Serluca, F. C., Drummond, I. A. & Fishman, M. C. Endothelial signaling in kidney morphogenesis: a role for hemodynamic forces. Curr. Biol. 12, 492–497 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • 101.

    Morizane, R. & Bonventre, J. V. Generation of nephron progenitor cells and kidney organoids from human pluripotent stem cells. Nat. Protoc. 12, 195–207 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 102.

    Tanigawa, S. et al. Organoids from nephrotic disease-derived iPSCs identify impaired NEPHRIN localization and slit diaphragm formation in kidney podocytes. Stem Cell Rep. 11, 727–740 (2018).

    CAS 

    Google Scholar 

  • 103.

    Morizane, R. & Bonventre, J. V. Kidney organoids: a translational journey. Trends Mol. Med. 23, 246–263 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 104.

    Kim, J., Koo, B.-K. & Knoblich, J. A. Human organoids: model systems for human biology and medicine. Nat. Rev. Mol. Cell Biol. 21, 571–584 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 105.

    McGuigan, A. P. & Sefton, M. V. Vascularized organoid engineered by modular assembly enables blood perfusion. Proc. Natl Acad. Sci. USA 103, 11461–11466 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 106.

    van den Berg, C. W., Koudijs, A., Ritsma, L. & Rabelink, T. J. In vivo assessment of size-selective glomerular sieving in transplanted human induced pluripotent stem cell-derived kidney organoids. J. Am. Soc. Nephrol. 31, 921–929 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 107.

    Ye, S. et al. A chemically defined hydrogel for human liver organoid culture. Adv. Funct. Mater. 30, 2000893 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 108.

    Curvello, R., Alves, D., Abud, H. E. & Garnier, G. A thermo-responsive collagen-nanocellulose hydrogel for the growth of intestinal organoids. Mater. Sci. Eng. C. 124, 112051 (2021).

    CAS 

    Google Scholar 

  • 109.

    Agarwal, T., Celikkin, N., Costantini, M., Maiti, T. K. & Makvandi, P. Recent advances in chemically defined and tunable hydrogel platforms for organoid culture. Bio-Des. Manuf. 4, 641–674 (2021).

    Google Scholar 

  • 110.

    Hynds, R. E., Bonfanti, P. & Janes, S. M. Regenerating human epithelia with cultured stem cells: feeder cells, organoids and beyond. EMBO Mol. Med. 10, 139–150 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 111.

    Nicodemus, G. D. & Bryant, S. J. Cell encapsulation in biodegradable hydrogels for tissue engineering applications. Tissue Eng. Part B Rev. 14, 149–165 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 112.

    Murphy, S. V. & Atala, A. 3D bioprinting of tissues and organs. Nat. Biotechnol. 32, 773–785 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 113.

    Zhang, Y. S. et al. 3D bioprinting for tissue and organ fabrication. Ann. Biomed. Eng. 45, 148–163 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 114.

    Gungor-Ozkerim, P. S., Inci, I., Zhang, Y. S., Khademhosseini, A. & Dokmeci, M. R. Bioinks for 3D bioprinting: an overview. Biomater. Sci. 6, 915–946 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 115.

    Homan, K. A. et al. Bioprinting of 3D convoluted renal proximal tubules on perfusable chips. Sci. Rep. 6, 34845 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 116.

    Grigoryan, B. et al. Multivascular networks and functional intravascular topologies within biocompatible hydrogels. Science 364, 458–464 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 117.

    Mandrycky, C., Wang, Z., Kim, K. & Kim, D. H. 3D bioprinting for engineering complex tissues. Biotechnol. Adv. 34, 422–434 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 118.

    Lawlor, K. T. et al. Cellular extrusion bioprinting improves kidney organoid reproducibility and conformation. Nat. Mater. 20, 260–271 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 119.

    Miri, A. K. et al. Effective bioprinting resolution in tissue model fabrication. Lab. Chip 19, 2019–2037 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 120.

    Heinrich, M. A. et al. 3D bioprinting: from benches to translational applications. Small 15, e1805510 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 121.

    Moroni, L. et al. Biofabrication strategies for 3D in vitro models and regenerative medicine. Nat. Rev. Mater. 3, 21–37 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 122.

    Li, W. et al. Recent advances in formulating and processing biomaterial inks for vat polymerization-based 3D printing. Adv. Healthc. Mater. 9, 2000156 (2020).

    CAS 

    Google Scholar 

  • 123.

    Zhu, Z., Ng, D. W. H., Park, H. S. & McAlpine, M. C. 3D-printed multifunctional materials enabled by artificial-intelligence-assisted fabrication technologies. Nat. Rev. Mater. 6, 27–47 (2020).

    Google Scholar 

  • 124.

    Xie, L. et al. Micro-CT imaging and structural analysis of glomeruli in a model of adriamycin-induced nephropathy. Am. J. Physiol. Ren. Physiol. 316, F76–F89 (2019).

    CAS 

    Google Scholar 

  • 125.

    Zhang, K. et al. 3D bioprinting of urethra with PCL/PLCL blend and dual autologous cells in fibrin hydrogel: an in vitro evaluation of biomimetic mechanical property and cell growth environment. Acta Biomater. 50, 154–164 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 126.

    Zhang, Y. S. et al. 3D extrusion bioprinting methods. Nat. Rev. Methods Primers 1, 75 (2021).

    Google Scholar 

  • 127.

    Li, X. et al. Inkjet bioprinting of biomaterials. Chem. Rev. 120, 10793–10833 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 128.

    Bishop, E. S. et al. 3-D bioprinting technologies in tissue engineering and regenerative medicine: current and future trends. Genes Dis. 4, 185–195 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 129.

    Ravanbakhsh, H. et al. Emerging technologies in multi-material bioprinting. Adv. Mater. 33, 2104730 (2021).

    CAS 

    Google Scholar 

  • 130.

    Liu.W. et al. Rapid continuous multimaterial extrusion bioprinting. Adv. Mater. 29(3), 1604630 (2017).

  • 131.

    Kolesky, D. B. et al. 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv. Mater. 26, 3124–3130 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 132.

    Xu, T. et al. Complex heterogeneous tissue constructs containing multiple cell types prepared by inkjet printing technology. Biomaterials 34, 130–139 (2013).

    PubMed 

    Google Scholar 

  • 133.

    Miri, A. K. et al. Microfluidics-enabled multimaterial maskless stereolithographic bioprinting. Adv. Mater. 30, e1800242 (2018).

    PubMed 

    Google Scholar 

  • 134.

    Ma, X. et al. Deterministically patterned biomimetic human iPSC-derived hepatic model via rapid 3D bioprinting. Proc. Natl Acad. Sci. USA 113, 2206–2211 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 135.

    Zhu, W. et al. Direct 3D bioprinting of prevascularized tissue constructs with complex microarchitecture. Biomaterials 124, 106–115 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 136.

    Gong, J. et al. Complexation-induced resolution enhancement of 3D-printed hydrogel constructs. Nat. Commun. 11, 1267 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 137.

    Lee, J. M. & Yeong, W. Y. Design and printing strategies in 3D bioprinting of cell-hydrogels: a review. Adv. Healthc. Mater. 5, 2856–2865 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 138.

    Duan, B. State-of-the-art review of 3D bioprinting for cardiovascular tissue engineering. Ann. Biomed. Eng. 45, 195–209 (2017).

    PubMed 

    Google Scholar 

  • 139.

    Fogo, A. B. & Kon, V. The glomerulus–a view from the inside–the endothelial cell. Int. J. Biochem. Cell Biol. 42, 1388–1397 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • 140.

    Aguado, B. A., Mulyasasmita, W., Su, J., Lampe, K. J. & Heilshorn, S. C. Improving viability of stem cells during syringe needle flow through the design of hydrogel cell carriers. Tissue Eng. Part A 18, 806–815 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • 141.

    Rayner, S. G. et al. Multiphoton-guided creation of complex organ-specific microvasculature. Adv. Healthc. Mater. 10, e2100031 (2021).

    PubMed 

    Google Scholar 

  • 142.

    Brassard, J. A., Nikolaev, M., Hübscher, T., Hofer, M. & Lutolf, M. P. Recapitulating macro-scale tissue self-organization through organoid bioprinting. Nat. Mater. 20, 22–29 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • 143.

    Zanella, F., Lorens, J. B. & Link, W. High content screening: seeing is believing. Trends Biotechnol. 28, 237–245 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • 144.

    Li, S. & Xia, M. Review of high-content screening applications in toxicology. Arch. Toxicol. 93, 3387–3396 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 145.

    Boreström, C. et al. A CRISP(e)R view on kidney organoids allows generation of an induced pluripotent stem cell-derived kidney model for drug discovery. Kidney Int. 94, 1099–1110 (2018).

    PubMed 

    Google Scholar 

  • 146.

    Zhang, Y. S. et al. Multisensor-integrated organs-on-chips platform for automated and continual in situ monitoring of organoid behaviors. Proc. Natl Acad. Sci. USA 114, E2293–E2302 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 147.

    Aleman, J., Kilic, T., Mille, L. S., Shin, S. R. & Zhang, Y. S. Microfluidic integration of regeneratable electrochemical affinity-based biosensors for continual monitoring of organ-on-a-chip devices. Nat. Protoc. 16, 2564–2593 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • 148.

    Abdallah, M. et al. Influence of hydrolyzed polyacrylamide hydrogel stiffness on podocyte morphology, phenotype, and mechanical properties. ACS Appl. Mater. Interfaces 11, 32623–32632 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 149.

    Nakao, Y., Kimura, H., Sakai, Y. & Fujii, T. Bile canaliculi formation by aligning rat primary hepatocytes in a microfluidic device. Biomicrofluidics 5, 022212 (2011).

    PubMed Central 

    Google Scholar 

  • 150.

    Huh, D. et al. Reconstituting organ-level lung functions on a chip. Science 328, 1662–1668 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 151.

    Tran, T. et al. In vivo developmental trajectories of human podocyte inform in vitro differentiation of pluripotent stem cell-derived podocytes. Dev. Cell 50, 102–116.e6 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 152.

    Ng, C. P., Zhuang, Y., Lin, A. W. H. & Teo, J. C. M. A fibrin-based tissue-engineered renal proximal tubule for bioartificial kidney devices: development, characterization and in vitro transport study. Int. J. Tissue Eng. 2013, 319476 (2013).

    Google Scholar 

  • 153.

    Chevtchik, N. V. et al. Upscaling of a living membrane for bioartificial kidney device. Eur. J. Pharmacol. 790, 28–35 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Source link