Wieland, H. A., Michaelis, M., Kirschbaum, B. J. & Rudolphi, K. A. Osteoarthritis—an untreatable disease? Nat. Rev. Drug Discov. 4, 331–344 (2005).
Google Scholar
Li, M. H., Xiao, R., Li, J. B. & Zhu, Q. Regenerative approaches for cartilage repair in the treatment of osteoarthritis. Osteoarthritis Cartilage 25, 1577–1587 (2017).
Google Scholar
He, Z., Wang, B., Hu, C. & Zhao, J. An overview of hydrogel-based intra-articular drug delivery for the treatment of osteoarthritis. Colloid Surf. B 154, 33–39 (2017).
Google Scholar
Morgese, G., Benetti, E. M. & Zenobi-Wong, M. Molecularly engineered biolubricants for articular cartilage. Adv. Healthc. Mater. 7, 1701463 (2018).
Google Scholar
Goldring, S. R. & Goldring, M. B. Changes in the osteochondral unit during osteoarthritis: structure, function and cartilage–bone crosstalk. Nat. Rev. Rheumatol. 12, 632–644 (2016).
Google Scholar
Sellam, J. & Berenbaum, F. The role of synovitis in pathophysiology and clinical symptoms of osteoarthritis. Nat. Rev. Rheumatol. 6, 625–635 (2010).
Google Scholar
Morgese, G., Cavalli, E., Muller, M., Zenobi-Wong, M. & Benetti, E. M. Nanoassemblies of tissue-reactive, polyoxazoline graft-copolymers restore the lubrication properties of degraded cartilage. ACS Nano 11, 2794–2804 (2017).
Google Scholar
Samaroo, K. J., Tan, M., Putnam, D. & Bonassar, L. J. Binding and lubrication of biomimetic boundary lubricants on articular cartilage. J. Orthop. Res. 35, 548–557 (2017).
Google Scholar
Morgese, G., Cavalli, E., Rosenboom, J. G., Zenobi-Wong, M. & Benetti, E. M. Cyclic polymer grafts that lubricate and protect damaged cartilage. Angew. Chem. Int. Ed. 57, 1621–1626 (2018).
Google Scholar
Singh, A. et al. Enhanced lubrication on tissue and biomaterial surfaces through peptide-mediated binding of hyaluronic acid. Nat. Mater. 13, 988–995 (2014).
Google Scholar
Lawrence, A. et al. Synthesis and characterization of a lubricin mimic (mLub) to reduce friction and adhesion on the articular cartilage surface. Biomaterials 73, 42–50 (2015).
Google Scholar
Prudnikova, K. et al. Biomimetic proteoglycans mimic macromolecular architecture and water uptake of natural proteoglycans. Biomacromolecules 18, 1713–1723 (2017).
Google Scholar
Banquy, X., Burdynska, J., Lee, D. W., Matyjaszewski, K. & Israelachvili, J. Bioinspired bottle-brush polymer exhibits low friction and Amontons-like behavior. J. Am. Chem. Soc. 136, 6199–6202 (2014).
Google Scholar
Faivre, J. et al. Intermolecular interactions between bottlebrush polymers boost the protection of surfaces against frictional. Wear. Chem. Mat. 30, 4140–4149 (2018).
Google Scholar
Klein, J. Molecular mechanisms of synovial joint lubrication. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 220, 691–710 (2006).
Google Scholar
Banquy, X., Lee, D. W., Das, S., Hogan, J. & Israelachvili, J. N. Shear-induced aggregation of mammalian synovial fluid components under boundary lubrication conditions. Adv. Funct. Mater. 24, 3152–3161 (2014).
Google Scholar
Seror, J. et al. Normal and shear interactions between hyaluronan–aggrecan complexes mimicking possible boundary lubricants in articular cartilage in synovial joints. Biomacromolecules 13, 3823–3832 (2012).
Google Scholar
Seror, J. et al. Articular cartilage proteoglycans as boundary lubricants: structure and frictional interaction of surface-attached hyaluronan and hyaluronan–aggrecan complexes. Biomacromolecules 12, 3432–3443 (2011).
Google Scholar
Maeda, S., Hara, Y., Sakai, T., Yoshida, R. & Hashimoto, S. Self-walking gel. Adv. Mater. 19, 3480–3484 (2007).
Google Scholar
Means, A. K., Shrode, C. S., Whitney, L. V., Ehrhardt, D. A. & Grunlan, M. A. Double network hydrogels that mimic the modulus, strength, and lubricity of cartilage. Biomacromolecules 20, 2034–2042 (2019).
Google Scholar
Ishihara, K. Highly lubricated polymer interfaces for advanced artificial hip joints through biomimetic design. Polym. J. 47, 585–597 (2015).
Google Scholar
Laterra, J., Silbert, J. E. & Culp, L. A. Cell surface heparan sulfate mediates some adhesive responses to glycosaminoglycan-binding matrices, including fibronectin. J. Cell Biol. 96, 112–123 (1983).
Google Scholar
Rossi, J. D., & Wallace, B. A. Binding of fibronectin to phospholipid vesicles. J. Biol. Chem. 258, 3327–3331 (1983).
Google Scholar
Heremans, A., de Cock, B, Cassiman, J. J., Van den Berghe, H. & David, G. The core protein of the matrix-associated heparan sulfate proteoglycan binds to fibronectin. J. Biol. Chem. 285, 8716–8724 (1990).
Google Scholar
Oh, E. J. et al. Control of the molecular degradation of hyaluronic acid hydrogels for tissue augmentation. J. Biomed. Mater. Res. Part A 86, 685–693 (2008).
Google Scholar
Jahn, S., Seror, J. & Klein, J. Lubrication of articular cartilage. Annu. Rev. Biomed. Eng. 18, 235–258 (2016).
Google Scholar
Klein, J. Hydration lubrication. Friction 1, 1–23 (2013).
Google Scholar
Silbert, G., Kampf, N. & Klein, J. Normal and shear forces between charged solid surfaces immersed in cationic surfactant solution: the role of the alkyl chain length. Langmuir 30, 5097–5104 (2014).
Google Scholar
Su, K., Lau, T. T., Leong, W., Gong, Y. & Wang, D.-A. Creating a living hyaline cartilage graft free from non-cartilaginous constituents: an intermediate role of a biomaterial scaffold. Adv. Funct. Mater. 22, 972–978 (2012).
Google Scholar
Lee, H. P., Gu, L., Mooney, D. J., Levenston, M. E. & Chaudhuri, O. Mechanical confinement regulates cartilage matrix formation by chondrocytes. Nat. Mater. 16, 1243–1251 (2017).
Google Scholar
Lorenz, H., Wenz, W., Ivancic, M., Steck, E. & Richter, W. Early and stable upregulation of collagen type II, collagen type I and YKL40 expression levels in cartilage during early experimental osteoarthritis occurs independent of joint location and histological grading. Arthritis Res. Ther. 7, 156–165 (2005).
Google Scholar
Inada, M. et al. Critical roles for collagenase-3 (Mmp13) in development of growth plate cartilage and in endochondral ossification. Proc. Natl Acad. Sci. USA 101, 17192–17197 (2004).
Google Scholar
Desando, G. et al. Short-term homing of hyaluronan-primed cells: therapeutic implications for osteoarthritis treatment. Tissue Eng. Part C 24, 121–133 (2018).
Google Scholar
Ishikawa, M. et al. Biocompatibility of cross-linked hyaluronate (Gel-200) for the treatment of knee osteoarthritis. Osteoarthr. Cartil. 22, 1902–1909 (2014).
Google Scholar
Yoshioka, K. et al. Biocompatibility study of different hyaluronan products for intra-articular treatment of knee osteoarthritis. BMC Musculoskel. Dis. 20, 424 (2019).
Google Scholar
Vincent, T. L. Targeting mechanotransduction pathways in osteoarthritis: a focus on the pericellular matrix. Curr. Opin. Pharmacol. 13, 449–454 (2013).
Google Scholar
Meinert, C. et al. Tailoring hydrogel surface properties to modulate cellular response to shear loading. Acta Biomater. 52, 105–117 (2017).
Google Scholar
Bonnevie, E. D. et al. Microscale frictional strains determine chondrocyte fate in loaded cartilage. J. Biomech. 74, 72–78 (2018).
Google Scholar
Jin, M., Frank, E. H., Quinn, T. M., Hunziker, E. B. & Grodzinsky, A. J. Tissue shear deformation stimulates proteoglycan and protein biosynthesis in bovine cartilage explants. Arch. Biochem. Biophys. 395, 41–48 (2001).
Google Scholar
Kellum, M. G., Harris, C. A., Mccormick, C. L. & Morgan, S. E. Stimuli-responsive micelles of amphiphilic AMPS-b-AAL copolymers in layer-by-layer films. J. Polym. Sci. Pol. Chem. 49, 1104–1111 (2011).
Google Scholar
Kellum, M. G., Smith, A. E., York, S. K. & McCormick, C. L. Reversible interpolyelectrolyte shell cross-linked micelles from pH/salt-responsive diblock copolymers synthesized via RAFT in aqueous solution. Macromolecules 43, 7033–7040 (2010).
Google Scholar
Bhuchar, N., Deng, Z., Ishihara, K. & Narain, R. Detailed study of the reversible addition–fragmentation chain transfer polymerization and co-polymerization of 2-methacryloyloxyethyl phosphorylcholine. Polym. Chem. 2, 632–639 (2011).
Google Scholar
Chan, J. W., Yu, B., Hoyle, C. E. & Lowe, A. B. Convergent synthesis of 3-arm star polymers from RAFT-prepared poly(N,N-diethylacrylamide) via a thiol-ene click reaction. Chem. Commun. 40, 4959–4961 (2008).
Google Scholar
Korogiannaki, M., Zhang, J. & Sheardown, H. Surface modification of model hydrogel contact lenses with hyaluronic acid via thiol-ene “click” chemistry for enhancing surface characteristics. J. Biomater. Appl. 32, 446–462 (2017).
Google Scholar
Maier, J. A. et al. ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. J. Chem. Theory Comput. 11, 3696–3713 (2015).
Google Scholar
Case, D. A. et al. The amber biomolecular simulation programs. J. Comput. Chem. 26, 1668–1688 (2005).
Google Scholar
Wang, J., Wang, W., Kollman, P. A. & Case, D. A. Automatic atom type and bond type perception in molecular mechanical calculations. J. Mol. Graph. 25, 247–260 (2006).
Google Scholar
Ryckaert, J.P., Ciccotti, G. & Berendsen, H. J. C. Numerical integration of the cartesian equations of motion of a system with constraints molecular dynamics of n-alkanes. J. Comput. Phys. 23, 327–341 (1977).
Google Scholar
Miller, B. R. III et al. MMPBSA.py: an efficient program for end-state free energy calculations. J. Chem. Theory Comput. 8, 3314–3321 (2012).
Google Scholar
Schmidt, T. A. & Sah, R. L. Effect of synovial fluid on boundary lubrication of articular cartilage. Osteoarthr. Cartil. 15, 35–47 (2007).
Google Scholar
Ko, J. Y., Choi, Y. J., Jeong, G. J. & Im, G. I. Sulforaphane-PLGA microspheres for the intra-articular treatment of osteoarthritis. Biomaterials 34, 5359–5368 (2013).
Google Scholar
Kang, M. L., Ko, J. Y., Kim, J. E. & Im, G. I. Intra-articular delivery of kartogenin-conjugated chitosan nano/microparticles for cartilage regeneration. Biomaterials 35, 9984–9994 (2014).
Google Scholar
Feng, Q. et al. Sulfated hyaluronic acid hydrogels with retarded degradation and enhanced growth factor retention promote hMSC chondrogenesis and articular cartilage integrity with reduced hypertrophy. Acta Biomater. 53, 329–342 (2017).
Google Scholar

