Preloader

Biomaterial-induced conversion of quiescent cardiomyocytes into pacemaker cells in rats

  • 1.

    Epstein, A. E. et al. 2012 ACCF/AHA/HRS focused update incorporated into the ACCF/AHA/HRS 2008 guidelines for device-based therapy of cardiac rhythm abnormalities: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines and the Heart Rhythm Society. Circulation 127, e283–e352 (2013).

    PubMed 

    Google Scholar 

  • 2.

    Cingolani, E., Goldhaber, J. I. & Marban, E. Next-generation pacemakers: from small devices to biological pacemakers. Nat. Rev. Cardiol. 15, 139–150 (2018).

    PubMed 

    Google Scholar 

  • 3.

    Protze, S. I. et al. Sinoatrial node cardiomyocytes derived from human pluripotent cells function as a biological pacemaker. Nat. Biotechnol. 35, 56–68 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 4.

    Kapoor, N., Liang, W., Marban, E. & Cho, H. C. Direct conversion of quiescent cardiomyocytes to pacemaker cells by expression of Tbx18. Nat. Biotechnol. 31, 54–62 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 5.

    Hu, Y. F., Dawkins, J. F., Cho, H. C., Marban, E. & Cingolani, E. Biological pacemaker created by minimally invasive somatic reprogramming in pigs with complete heart block. Sci. Transl. Med. 6, 245ra94 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 6.

    Munshi, N. V. & Olson, E. N. Translational medicine. Improving cardiac rhythm with a biological pacemaker. Science 345, 268–269 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 7.

    Fox, I. J. et al. Stem cell therapy. Use of differentiated pluripotent stem cells as replacement therapy for treating disease. Science 345, 1247391 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 8.

    Bongianino, R. & Priori, S. G. Gene therapy to treat cardiac arrhythmias. Nat. Rev. Cardiol. 12, 531–546 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 9.

    Rosen, M. R. Gene therapy and biological pacing. N. Engl. J. Med. 371, 1158–1159 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 10.

    Hou, P. et al. Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science 341, 651–654 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 11.

    Paoletti, C., Divieto, C. & Chiono, V. Impact of biomaterials on differentiation and reprogramming approaches for the generation of functional cardiomyocytes. Cells 7, 114 (2018).

    CAS 
    PubMed Central 

    Google Scholar 

  • 12.

    Yang, M. C. et al. The cardiomyogenic differentiation of rat mesenchymal stem cells on silk fibroin-polysaccharide cardiac patches in vitro. Biomaterials 30, 3757–3765 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • 13.

    Chopra, A. et al. Reprogramming cardiomyocyte mechanosensing by crosstalk between integrins and hyaluronic acid receptors. J. Biomech. 45, 824–831 (2012).

    PubMed 

    Google Scholar 

  • 14.

    Li, Y. et al. Tissue-engineered 3-dimensional (3D) microenvironment enhances the direct reprogramming of fibroblasts into cardiomyocytes by microRNAs. Sci. Rep. 6, 38815 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 15.

    Smith, A. W. et al. Direct reprogramming of mouse fibroblasts to cardiomyocyte-like cells using Yamanaka factors on engineered poly(ethylene glycol) (PEG) hydrogels. Biomaterials 34, 6559–6571 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 16.

    Shinagawa, Y., Satoh, H. & Noma, A. The sustained inward current and inward rectifier K+ current in pacemaker cells dissociated from rat sinoatrial node. J. Physiol. 523, 593–605 (2000).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 17.

    DiFrancesco, D. The role of the funny current in pacemaker activity. Circ. Res. 106, 434–446 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • 18.

    Maltsev, V. A. & Lakatta, E. G. Dynamic interactions of an intracellular Ca2+ clock and membrane ion channel clock underlie robust initiation and regulation of cardiac pacemaker function. Cardiovasc. Res. 77, 274–284 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • 19.

    Lakatta, E. G., Maltsev, V. A. & Vinogradova, T. M. A coupled SYSTEM of intracellular Ca2+ clocks and surface membrane voltage clocks controls the timekeeping mechanism of the heart’s pacemaker. Circ. Res. 106, 659–673 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 20.

    Vinogradova, T. M. et al. High basal protein kinase A-dependent phosphorylation drives rhythmic internal Ca2+ store oscillations and spontaneous beating of cardiac pacemaker cells. Circ. Res. 98, 505–514 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • 21.

    Boyett, M. R. et al. Sophisticated architecture is required for the sinoatrial node to perform its normal pacemaker function. J. Cardiovasc. Electrophysiol. 14, 104–106 (2003).

    PubMed 

    Google Scholar 

  • 22.

    ten Velde, I. et al. Spatial distribution of connexin43, the major cardiac gap junction protein, visualizes the cellular network for impulse propagation from sinoatrial node to atrium. Circ. Res. 76, 802–811 (1995).

    PubMed 

    Google Scholar 

  • 23.

    Verheijck, E. E. et al. Electrophysiological features of the mouse sinoatrial node in relation to connexin distribution. Cardiovasc. Res. 52, 40–50 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • 24.

    Wang, W. E. et al. Dedifferentiation, proliferation, and redifferentiation of adult mammalian cardiomyocytes after ischemic injury. Circulation 136, 834–848 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 25.

    D’Uva, G. et al. ERBB2 triggers mammalian heart regeneration by promoting cardiomyocyte dedifferentiation and proliferation. Nat. Cell Biol. 17, 627–638 (2015).

    PubMed 

    Google Scholar 

  • 26.

    Jopling, C. et al. Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature 464, 606–609 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 27.

    Chen, X. et al. Single-cell transcriptome and epigenomic reprogramming of cardiomyocyte-derived cardiac progenitor cells. Sci. Data 3, 160079 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 28.

    Guo, M., Breslin, J. W., Wu, M. H., Gottardi, C. J. & Yuan, S. Y. VE-cadherin and beta-catenin binding dynamics during histamine-induced endothelial hyperpermeability. Am. J. Physiol. Cell Physiol. 294, C977–C984 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • 29.

    Lagendijk, A. K. et al. Live imaging molecular changes in junctional tension upon VE-cadherin in zebrafish. Nat. Commun. 8, 1402 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 30.

    Gottardi, C. J. & Gumbiner, B. M. Distinct molecular forms of beta-catenin are targeted to adhesive or transcriptional complexes. J. Cell Biol. 167, 339–349 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 31.

    Kwon, C. et al. A regulatory pathway involving Notch1/beta-catenin/Isl1 determines cardiac progenitor cell fate. Nat. Cell Biol. 11, 951–957 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 32.

    Liu, C. et al. Control of beta-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell 108, 837–847 (2002).

    CAS 

    Google Scholar 

  • 33.

    David, M. D. et al. Signalling by neurotrophins and hepatocyte growth factor regulates axon morphogenesis by differential beta-catenin phosphorylation. J. Cell Sci. 121, 2718–2730 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • 34.

    Lin, L. et al. Beta-catenin directly regulates Islet1 expression in cardiovascular progenitors and is required for multiple aspects of cardiogenesis. Proc. Natl Acad. Sci. USA 104, 9313–9318 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 35.

    Norden, J., Greulich, F., Rudat, C., Taketo, M. M. & Kispert, A. Wnt/beta-catenin signaling maintains the mesenchymal precursor pool for murine sinus horn formation. Circ. Res. 109, e42–e50 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • 36.

    Schuijers, J., Mokry, M., Hatzis, P., Cuppen, E. & Clevers, H. Wnt-induced transcriptional activation is exclusively mediated by TCF/LEF. EMBO J. 33, 146–156 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 37.

    Watanabe, K. et al. Integrative ChIP-seq/microarray analysis identifies a CTNNB1 target signature enriched in intestinal stem cells and colon cancer. PLoS ONE 9, e92317 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 38.

    Bakker, M. L. et al. T-box transcription factor TBX3 reprogrammes mature cardiac myocytes into pacemaker-like cells. Cardiovasc. Res. 94, 439–449 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • 39.

    Le Bras, A. et al. HIF-2alpha specifically activates the VE-cadherin promoter independently of hypoxia and in synergy with Ets-1 through two essential ETS-binding sites. Oncogene 26, 7480–7489 (2007).

    PubMed 

    Google Scholar 

  • 40.

    Costa, G. et al. SOX7 regulates the expression of VE-cadherin in the haemogenic endothelium at the onset of haematopoietic development. Development 139, 1587–1598 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • 41.

    Prandini, M. H. et al. The human VE-cadherin promoter is subjected to organ-specific regulation and is activated in tumour angiogenesis. Oncogene 24, 2992–3001 (2005).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 42.

    Opthof, T. et al. Functional and morphological organization of the guinea-pig sinoatrial node compared with the rabbit sinoatrial node. J. Mol. Cell. Cardiol. 17, 549–564 (1985).

    CAS 
    PubMed 

    Google Scholar 

  • 43.

    Opthof, T., de Jonge, B., Masson-Pevet, M., Jongsma, H. J. & Bouman, L. N. Functional and morphological organization of the cat sinoatrial node. J. Mol. Cell. Cardiol. 18, 1015–1031 (1986).

    CAS 
    PubMed 

    Google Scholar 

  • 44.

    Bleeker, W. K., Mackaay, A. J., Masson-Pevet, M., Bouman, L. N. & Becker, A. E. Functional and morphological organization of the rabbit sinus node. Circ. Res. 46, 11–22 (1980).

    CAS 
    PubMed 

    Google Scholar 

  • 45.

    Sahara, M., Santoro, F. & Chien, K. R. Programming and reprogramming a human heart cell. EMBO J. 34, 710–738 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 46.

    Lin, B. et al. Modulating cell fate as a therapeutic strategy. Cell Stem Cell 23, 329–341 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 47.

    Kong, Y. P. et al. A systems mechanobiology model to predict cardiac reprogramming outcomes on different biomaterials. Biomaterials 181, 280–292 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 48.

    Wu, X. et al. Cardiomyocyte contractile status is associated with differences in fibronectin and integrin interactions. Am. J. Physiol. Heart Circ. Physiol. 298, H2071–H2081 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 49.

    Brancaccio, M. et al. Integrin signalling: the tug-of-war in heart hypertrophy. Cardiovasc. Res. 70, 422–433 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • 50.

    Gluck, J. M. et al. Biochemical and biomechanical properties of the pacemaking sinoatrial node extracellular matrix are distinct from contractile left ventricular matrix. PLoS ONE 12, e0185125 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 51.

    Happe, C. L. & Engler, A. J. Mechanical forces reshape differentiation cues that guide cardiomyogenesis. Circ. Res. 118, 296–310 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 52.

    Christoffels, V. M., Smits, G. J., Kispert, A. & Moorman, A. F. Development of the pacemaker tissues of the heart. Circ. Res. 106, 240–254 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • 53.

    Long, J., Kim, H., Kim, D., Lee, J. B. & Kim, D. H. A biomaterial approach to cell reprogramming and differentiation. J. Mater. Chem. B 5, 2375–2379 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 54.

    Kundu, B., Rajkhowa, R., Kundu, S. C. & Wang, X. Silk fibroin biomaterials for tissue regenerations. Adv. Drug Deliv. Rev. 65, 457–470 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 55.

    Kizana, E. et al. Gene transfer of connexin43 mutants attenuates coupling in cardiomyocytes: novel basis for modulation of cardiac conduction by gene therapy. Circ. Res. 100, 1597–1604 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • 56.

    Chung, T. W., Lo, H. Y., Chou, T. H., Chen, J. H. & Wang, S. S. Promoting cardiomyogenesis of hBMSC with a forming self-assembly hBMSC microtissues/HA-GRGD/SF-PCL cardiac patch is mediated by the synergistic functions of HA-GRGD. Macromol. Biosci. 17, 1600173 (2017).

    Google Scholar 

  • 57.

    Lo, H. Y., Huang, A. L., Lee, P. C., Chung, T. W. & Wang, S. S. Morphological transformation of hBMSC from 2D monolayer to 3D microtissue on low-crystallinity silk-fibroin-PCL patch with promotion of cardiomyogenesis. J. Tissue Eng. Regen. Med. 12, e1852–e1864 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 58.

    Partlow, B. P. et al. Highly tunable elastomeric silk biomaterials. Adv. Funct. Mater. 24, 4615–4624 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 59.

    Bryan, N., Rhodes, N. P. & Hunt, J. A. Derivation and performance of an entirely autologous injectable hydrogel delivery system for cell-based therapies. Biomaterials 30, 180–188 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • 60.

    Weng, C. H. et al. Pleiotropic effects of myocardial MMP-9 inhibition to prevent ventricular arrhythmia. Sci. Rep. 6, 38894 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 61.

    Trapnell, C. et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc. 7, 562–578 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 62.

    Motayagheni, N. Modified Langendorff technique for mouse heart cannulation: improved heart quality and decreased risk of ischemia. MethodsX 4, 508–512 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 63.

    Sung, Y. L. et al. Effects of long-term exercise on arrhythmogenesis in aged hypertensive rats. Comput. Biol. Med. 102, 390–395 (2018).

    PubMed 

    Google Scholar 

  • 64.

    Chen, C. W., Kuo, T. B., Chen, C. Y. & Yang, C. C. Reduced capacity of autonomic and baroreflex control associated with sleep pattern in spontaneously hypertensive rats with a nondipping profile. J. Hypertens. 35, 558–570 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Source link