Liu, J., Gefen, O., Ronin, I., Bar-Meir, M. & Balaban, N. Q. Effect of tolerance on the evolution of antibiotic resistance under drug combinations. Science 367, 200–204 (2020).
Google Scholar
Costerton, J. W., Stewart, P. S. & Greenberg, E. P. Bacterial biofilms: a common cause of persistent infections. Science 284, 1318–1322 (1999).
Google Scholar
Koo, H., Allan, R. N., Howlin, R. P., Stoodley, P. & Hall-Stoodley, L. Targeting microbial biofilms: current and prospective therapeutic strategies. Nat. Rev. Microbiol. 15, 740–755 (2017).
Google Scholar
Pumart, P. et al. Health and economic impacts of antimicrobial resistance in Thailand. J. Health Serv. Res. Policy 6, 352–360 (2012).
Sprenger, M. & Fukuda, K. New mechanisms, new worries. Science 351, 1263–1264 (2016).
Google Scholar
Edelstein, M. V. et al. Spread of extensively resistant VIM-2-positive ST235 Pseudomonas aeruginosa in Belarus, Kazakhstan, and Russia: a longitudinal epidemiological and clinical study. Lancet Infect. Dis. 13, 867–876 (2013).
Google Scholar
Weiner-Lastinger, L. M. et al. Antimicrobial-resistant pathogens associated with adult healthcare-associated infections: Summary of data reported to the National Healthcare Safety Network, 2015–2017. Infect. Control Hosp. Epidemiol. 41, 1–18 (2020).
Google Scholar
Weiner-Lastinger, L. M. et al. Antimicrobial-resistant pathogens associated with pediatric healthcare-associated infections: Summary of data reported to the National Healthcare Safety Network, 2015–2017. Infect. Control Hosp. Epidemiol. 41, 19–30 (2020).
Google Scholar
Weiner, L. M. et al. Antimicrobial-resistant pathogens associated with healthcare-associated infections: summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2011–2014. Infect. Control Hosp. Epidemiol. 37, 1288–1301 (2016).
Google Scholar
Levin-Reisman, I. et al. Antibiotic tolerance facilitates the evolution of resistance. Science 355, 826–830 (2017).
Google Scholar
Langdon, A., Crook, N. & Dantas, G. The effects of antibiotics on the microbiome throughout development and alternative approaches for therapeutic modulation. Genome Med. 8, 39 (2016).
Google Scholar
van Santen, K. L. et al. The standardized antimicrobial administration ratio: a new metric for measuring and comparing antibiotic use. Clin. Infect. Dis. 67, 179–185 (2018).
Google Scholar
Dedrick, R. M. et al. Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant Mycobacterium abscessus. Nat. Med. 25, 730–733 (2019).
Google Scholar
Schuch, R., Nelson, D. & Fischetti, V. A. A bacteriolytic agent that detects and kills Bacillus anthracis. Nature 418, 884–889 (2002).
Google Scholar
Loeffler, J. M. & Fischetti, V. A. Synergistic lethal effect of a combination of phage lytic enzymes with different activities on penicillin-sensitive and -resistant Streptococcus pneumoniae strains. Antimicrob. Agents Chemother. 47, 375–377 (2003).
Google Scholar
Chen, C. H. & Lu, T. K. Development and challenges of antimicrobial peptides for therapeutic applications. Antibiotics 9, 24 (2020).
Google Scholar
Usmani, S. S. et al. THPdb: Database of FDA-approved peptide and protein therapeutics. PLoS ONE 12, e0181748 (2017).
Google Scholar
Donlan, R. M. Preventing biofilms of clinically relevant organisms using bacteriophage. Trends Microbiol. 17, 66–72 (2009).
Google Scholar
Labrie, S. J., Samson, J. E. & Moineau, S. Bacteriophage resistance mechanisms. Nat. Rev. Microbiol. 8, 317–327 (2010).
Google Scholar
Dufour, N., Delattre, R., Ricard, J. D. & Debarbieux, L. The lysis of pathogenic Escherichia coli by bacteriophages releases less endotoxin than by β-lactams. Clin. Infect. Dis. 64, 1582–1588 (2017).
Google Scholar
Cho, I. & Blaser, M. J. The human microbiome: at the interface of health and disease. Nat. Rev. Genet. 13, 260–270 (2012).
Google Scholar
Schooley, R. T. et al. Development and use of personalized bacteriophage-based therapeutic cocktails to treat a patient with a disseminated resistant Acinetobacter baumannii infection. Antimicrob. Agents Chemother. 61, e00954-17 (2017).
Google Scholar
Jennes, S. et al. Use of bacteriophages in the treatment of colistin-only-sensitive Pseudomonas aeruginosa septicaemia in a patient with acute kidney injury — a case report. Crit. Care 21, 129 (2017).
Google Scholar
Wroe, J. A., Johnson, C. T. & García, A. J. Bacteriophage delivering hydrogels reduce biofilm formation in vitro and infection in vivo. J. Biomed. Mater. Res. A 108, 39–49 (2020).
Google Scholar
Meurice, E. et al. New antibacterial microporous CaP materials loaded with phages for prophylactic treatment in bone surgery. J. Mater. Sci. Mater. Med. 23, 2445–2452 (2012).
Google Scholar
Barros, J. A. R. et al. Encapsulated bacteriophages in alginate-nanohydroxyapatite hydrogel as a novel delivery system to prevent orthopedic implant-associated infections. Nanomedicine 24, 102145 (2020).
Google Scholar
Kaur, S., Harjai, K. & Chhibber, S. In vivo assessment of phage and linezolid based implant coatings for treatment of methicillin resistant S. aureus (MRSA) mediated orthopaedic device related infections. PLoS ONE 11, e0157626 (2016).
Google Scholar
Carrigy, N. B. et al. Prophylaxis of Mycobacterium tuberculosis H37Rv infection in a preclinical mouse model via inhalation of nebulized bacteriophage D29. Antimicrob. Agents Chemother. 63, e00871-19 (2019).
Google Scholar
Prazak, J. et al. Nebulized bacteriophages for prophylaxis of experimental ventilator-associated pneumonia due to methicillin-resistant Staphylococcus aureus. Crit. Care Med. 48, 1042–1046 (2020).
Google Scholar
Golshahi, L., Lynch, K. H., Dennis, J. J. & Finlay, W. H. In vitro lung delivery of bacteriophages KS4-M and ΦKZ using dry powder inhalers for treatment of Burkholderia cepacia complex and Pseudomonas aeruginosa infections in cystic fibrosis. J. Appl. Microbiol. 110, 106–117 (2011).
Google Scholar
Singla, S., Harjai, K., Katare, O. P. & Chhibber, S. Bacteriophage-loaded nanostructured lipid carrier: improved pharmacokinetics mediates effective resolution of Klebsiella pneumoniae-induced lobar pneumonia. J. Infect. Dis. 212, 325–334 (2015).
Google Scholar
Agarwal, R. et al. Inhaled bacteriophage-loaded polymeric microparticles ameliorate acute lung infections. Nat. Biomed. Eng. 2, 841–849 (2018). Polymeric microparticles facilitate delivery of bacteriophages to mitigate bacterial lung infections in wild-type and cystic fibrosis transgenic mice.
Google Scholar
Vinner, G. K., Richards, K., Leppanen, M., Sagona, A. P. & Malik, D. J. Microencapsulation of enteric bacteriophages in a pH-responsive solid oral dosage formulation using a scalable membrane emulsification process. Pharmaceutics 11, 475 (2019).
Google Scholar
Vinner, G. K., Vladisavljević, G. T., Clokie, M. R. J. & Malik, D. J. Microencapsulation of Clostridium difficile specific bacteriophages using microfluidic glass capillary devices for colon delivery using pH triggered release. PLoS ONE 12, e0186239 (2017).
Google Scholar
Thakral, S., Thakral, N. K. & Majumdar, D. K. Eudragit®: a technology evaluation. Expert Opin. Drug Deliv. 10, 131–149 (2013).
Google Scholar
Ma, Y. P. et al. Enhanced alginate microspheres as means of oral delivery of bacteriophage for reducing Staphylococcus aureus intestinal carriage. Food Hydrocoll. 26, 434–440 (2012).
Google Scholar
Colom, J. et al. Microencapsulation with alginate/CaCO3: A strategy for improved phage therapy. Sci. Rep. 7, 41441 (2017).
Google Scholar
Adamu Ahmad, K., Sabo Mohammed, A. & Abas, F. Chitosan nanoparticles as carriers for the delivery of ΦKAZ14 bacteriophage for oral biological control of colibacillosis in chickens. Molecules 21, 256 (2016).
Google Scholar
Rastogi, V., Yadav, P., Verma, A. & Pandit, J. K. Ex vivo and in vivo evaluation of microemulsion based transdermal delivery of E. coli specific T4 bacteriophage: A rationale approach to treat bacterial infection. Eur. J. Pharm. Sci. 107, 168–182 (2017).
Google Scholar
Jain, S., Chaudhari, B. H. & Swarnakar, N. K. Preparation and characterization of niosomal gel for iontophoresis mediated transdermal delivery of isosorbide dinitrate. Drug Deliv. Transl Res. 1, 309–321 (2011).
Google Scholar
Sarhan, W. A. & Azzazy, H. M. Apitherapeutics and phage-loaded nanofibers as wound dressings with enhanced wound healing and antibacterial activity. Nanomedicine 12, 2055–2067 (2017).
Google Scholar
Cheng, W. et al. Incorporation of bacteriophages in polycaprolactone/collagen fibers for antibacterial hemostatic dual-function. J. Biomed. Mater. Res. Part B 106, 2588–2595 (2018).
Google Scholar
Chhibber, S., Kaur, J. & Kaur, S. Liposome entrapment of bacteriophages improves wound healing in a diabetic mouse MRSA infection. Front. Microbiol. 9, 561 (2018).
Google Scholar
Chadha, P., Katare, O. P. & Chhibber, S. Liposome loaded phage cocktail: Enhanced therapeutic potential in resolving Klebsiella pneumoniae mediated burn wound infections. Burns 43, 1532–1543 (2017).
Google Scholar
Rubalskii, E. et al. Fibrin glue as a local drug-delivery system for bacteriophage PA5. Sci. Rep. 9, 2091 (2019).
Google Scholar
Centers for Disease Control and Prevention. Catheter-associated urinary tract infections (CAUTI). CDC https://www.cdc.gov/hai/ca_uti/uti.html (2015).
Lehman, S. M. & Donlan, R. M. Bacteriophage-mediated control of a two-species biofilm formed by microorganisms causing catheter-associated urinary tract infections in an in vitro urinary catheter model. Antimicrob. Agents Chemother. 59, 1127–1137 (2015).
Google Scholar
Liao, K. S., Lehman, S. M., Tweardy, D. J., Donlan, R. M. & Trautner, B. W. Bacteriophages are synergistic with bacterial interference for the prevention of Pseudomonas aeruginosa biofilm formation on urinary catheters. J. Appl. Microbiol. 113, 1530–1539 (2012).
Google Scholar
Milo, S. et al. Prevention of encrustation and blockage of urinary catheters by Proteus mirabilis via pH-triggered release of bacteriophage. J. Mater. Chem. B 5, 5403–5411 (2017).
Google Scholar
Lungren, M. P. et al. Bacteriophage K antimicrobial-lock technique for treatment of Staphylococcus aureus central venous catheter-related infection: a leporine model efficacy analysis. J. Vasc. Interv. Radiol. 25, 1627–1632 (2014).
Google Scholar
Curtin, J. J. & Donlan, R. M. Using bacteriophages to reduce formation of catheter-associated biofilms by Staphylococcus epidermidis. Antimicrob. Agents Chemother. 50, 1268–1275 (2006).
Google Scholar
Fu, W. et al. Bacteriophage cocktail for the prevention of biofilm formation by Pseudomonas aeruginosa on catheters in an in vitro model system. Antimicrob. Agents Chemother. 54, 397–404 (2010).
Google Scholar
Mookherjee, N., Anderson, M. A., Haagsman, H. P. & Davidson, D. J. Antimicrobial host defence peptides: functions and clinical potential. Nat. Rev. Drug Discov. 19, 311–332 (2020).
Google Scholar
Di, Y. P. et al. Enhanced therapeutic index of an antimicrobial peptide in mice by increasing safety and activity against multidrug-resistant bacteria. Sci. Adv. 6, eaay6817 (2020).
Google Scholar
Lazzaro, B. P., Zasloff, M. & Rolff, J. Antimicrobial peptides: Application informed by evolution. Science 368, eaau5480 (2020).
Google Scholar
Gordon, Y. J., Romanowski, E. G. & McDermott, A. M. A review of antimicrobial peptides and their therapeutic potential as anti-infective drugs. Curr. Eye Res. 30, 505–515 (2005).
Google Scholar
Bacalum, M. & Radu, M. Cationic antimicrobial peptides cytotoxicity on mammalian cells: an analysis using therapeutic index integrative concept. Int. J. Pept. Res. Ther. 21, 47–55 (2015).
Google Scholar
Rai, A. et al. One-step synthesis of high-density peptide-conjugated gold nanoparticles with antimicrobial efficacy in a systemic infection model. Biomaterials 85, 99–110 (2016).
Google Scholar
Qi, G. B., Zhang, D., Liu, F. H., Qiao, Z. Y. & Wang, H. An “on-site transformation” strategy for treatment of bacterial infection. Adv. Mater. 29, 1703461 (2017).
Google Scholar
Kwon, E. J. et al. Porous silicon nanoparticle delivery of tandem peptide anti-infectives for the treatment of Pseudomonas aeruginosa lung infections. Adv. Mater. 29, 1701527 (2017).
Google Scholar
Lim, K. et al. Anhydrous polymer-based coating with sustainable controlled release functionality for facile, efficacious impregnation, and delivery of antimicrobial peptides. Biotechnol. Bioeng. 115, 2000–2012 (2018).
Google Scholar
Qi, F. et al. Practical preparation of infection-resistant biomedical surfaces from antimicrobial β-peptide polymers. ACS Appl. Mater. Interfaces 11, 18907–18913 (2019).
Google Scholar
Zhuk, I. et al. Self-defensive layer-by-layer films with bacteria-triggered antibiotic release. ACS Nano 8, 7733–7745 (2014).
Google Scholar
Zhang, X.-Y. et al. Antimicrobial peptide-conjugated hierarchical antifouling polymer brushes for functionalized catheter surfaces. Biomacromolecules 20, 4171–4179 (2019).
Google Scholar
Yu, K. et al. Anti-adhesive antimicrobial peptide coating prevents catheter associated infection in a mouse urinary infection model. Biomaterials 116, 69–81 (2017).
Google Scholar
Gao, Q. et al. Rationally designed dual functional block copolymers for bottlebrush-like coatings: In vitro and in vivo antimicrobial, antibiofilm, and antifouling properties. Acta Biomater. 51, 112–124 (2017).
Google Scholar
Chen, R., Willcox, M. D., Ho, K. K., Smyth, D. & Kumar, N. Antimicrobial peptide melimine coating for titanium and its in vivo antibacterial activity in rodent subcutaneous infection models. Biomaterials 85, 142–151 (2016).
Google Scholar
Shen, X. et al. Antibacterial and osteogenesis performances of LL37-loaded titania nanopores in vitro and in vivo. Int. J. Nanomed. 14, 3043–3054 (2019).
Google Scholar
Song, Y.-Y., Schmidt-Stein, F., Bauer, S. & Schmuki, P. Amphiphilic TiO2 nanotube arrays: an actively controllable drug delivery system. J. Am. Chem. Soc. 131, 4230–4232 (2009).
Google Scholar
Kazemzadeh-Narbat, M. et al. Multilayered coating on titanium for controlled release of antimicrobial peptides for the prevention of implant-associated infections. Biomaterials 34, 5969–5977 (2013).
Google Scholar
Shi, J. et al. Biological and immunotoxicity evaluation of antimicrobial peptide-loaded coatings using a layer-by-layer process on titanium. Sci. Rep. 5, 16336 (2015).
Google Scholar
Kazemzadeh-Narbat, M. et al. Drug release and bone growth studies of antimicrobial peptide-loaded calcium phosphate coating on titanium. J. Biomed. Mater. Res. Part B 100, 1344–1352 (2012).
Google Scholar
Yang, G. et al. Sustained release of antimicrobial peptide from self-assembling hydrogel enhanced osteogenesis. J. Biomater. Sci. Polym. Ed. 29, 1812–1824 (2018).
Google Scholar
Yuan, X. et al. Multifunctional sulfonated polyetheretherketone coating with beta-defensin-14 for yielding durable and broad-spectrum antibacterial activity and osseointegration. Acta Biomater. 86, 323–337 (2019).
Google Scholar
Cormier, A. R., Pang, X., Zimmerman, M. I., Zhou, H.-X. & Paravastu, A. K. Molecular structure of RADA16-I designer self-assembling peptide nanofibers. ACS Nano 7, 7562–7572 (2013).
Google Scholar
Briuglia, M. L., Urquhart, A. J. & Lamprou, D. A. Sustained and controlled release of lipophilic drugs from a self-assembling amphiphilic peptide hydrogel. Int. J. Pharm. 474, 103–111 (2014).
Google Scholar
Irwansyah, I. et al. Gram-positive antimicrobial activity of amino acid-based hydrogels. Adv. Mater. 27, 648–654 (2015).
Google Scholar
Lohmann, N. et al. Glycosaminoglycan-based hydrogels capture inflammatory chemokines and rescue defective wound healing in mice. Sci. Transl Med. 9, eaai9044 (2017).
Google Scholar
Li, J., Liang, S., Yan, Y., Tian, X. & Li, X. O-mannosylation affords a glycopeptide hydrogel with inherent antibacterial activities against E. coli via multivalent interactions between lectins and supramolecular assemblies. Macromol. Biosci. 19, e1900124 (2019).
Google Scholar
Xie, Z. et al. Design of antimicrobial peptides conjugated biodegradable citric acid derived hydrogels for wound healing. J. Biomed. Mater. Res. A 103, 3907–3918 (2015).
Google Scholar
Liu, M. et al. Fabrication of KR-12 peptide-containing hyaluronic acid immobilized fibrous eggshell membrane effectively kills multi-drug-resistant bacteria, promotes angiogenesis and accelerates re-epithelialization. Int. J. Nanomed. 14, 3345–3360 (2019).
Google Scholar
Obuobi, S. et al. Facile and efficient encapsulation of antimicrobial peptides via crosslinked DNA nanostructures and their application in wound therapy. J. Control. Rel. 313, 120–130 (2019).
Google Scholar
Ch’ng, J.-H., Chong, K. K. L., Lam, L. N., Wong, J. J. & Kline, K. A. Biofilm-associated infection by enterococci. Nat. Rev. Microbiol. 17, 82–94 (2019).
Google Scholar
Wolcott, R. D., Rhoads, D. D. & Dowd, S. E. Biofilms and chronic wound inflammation. J. Wound Care 17, 333–341 (2008).
Google Scholar
Maiden, M. M., Zachos, M. P. & Waters, C. M. Hydrogels embedded with melittin and tobramycin are effective against Pseudomonas aeruginosa biofilms in an animal wound model. Front. Microbiol. 10, 1348 (2019).
Google Scholar
Wang, J. et al. pH-Switchable antimicrobial nanofiber networks of hydrogel eradicate biofilm and rescue stalled healing in chronic wounds. ACS Nano 13, 11686–11697 (2019). A pH-responsive hydrogel that displays antimicrobial activity at an acidic pH, which is characteristic for the pathological environment of infected chronic wounds, erradicates biofilms and facilitates wound healing.
Google Scholar
Puthia, M. et al. A dual-action peptide-containing hydrogel targets wound infection and inflammation. Sci. Transl Med. 12, eaax6601 (2020). A TCP-25-loaded hydrogel reduces bacterial counts and inflammation in murine subcutaneous wound and porcine partial thickness wound models, and improves wound healing.
Google Scholar
Dutta, D., Ozkan, J. & Willcox, M. D. P. Biocompatibility of antimicrobial melimine lenses: rabbit and human studies. Optom. Vis. Sci. 91, 570–581 (2014).
Google Scholar
Cole, N. et al. In vivo performance of melimine as an antimicrobial coating for contact lenses in models of CLARE and CLPU. Invest. Ophthalmol. Vis. Sci. 51, 390–395 (2010).
Google Scholar
Dutta, D., Vijay, A. K., Kumar, N. & Willcox, M. D. Melimine-coated antimicrobial contact lenses reduce microbial keratitis in an animal model. Invest. Ophthalmol. Vis. Sci. 57, 5616–5624 (2016).
Google Scholar
Dutta, D. et al. Development of silicone hydrogel antimicrobial contact lenses with Mel4 peptide coating. Optom. Vis. Sci. 95, 937–946 (2018).
Google Scholar
Gonzalez-Delgado, L. S. et al. Two-site recognition of Staphylococcus aureus peptidoglycan by lysostaphin SH3b. Nat. Chem. Biol. 16, 24–30 (2020).
Google Scholar
Cui, F. et al. Development of chitosan-collagen hydrogel incorporated with lysostaphin (CCHL) burn dressing with anti-methicillin-resistant Staphylococcus aureus and promotion wound healing properties. Drug Deliv. 18, 173–180 (2011).
Google Scholar
Windolf, C. D., Lögters, T., Scholz, M., Windolf, J. & Flohé, S. Lysostaphin-coated titan-implants preventing localized osteitis by Staphylococcus aureus in a mouse model. PLoS ONE 9, e115940 (2014).
Google Scholar
Xue, B. et al. A novel controlled-release system for antibacterial enzyme lysostaphin delivery using hydroxyapatite/chitosan composite bone cement. PLoS ONE 9, e113797 (2014).
Google Scholar
Nithya, S. et al. Preparation, characterization and efficacy of lysostaphin-chitosan gel against Staphylococcus aureus. Int. J. Biol. Macromol. 110, 157–166 (2018).
Google Scholar
Abulateefeh, S. R. et al. Facile synthesis of responsive nanoparticles with reversible, tunable and rapid thermal transitions from biocompatible constituents. Chem. Commun. https://doi.org/10.1039/B911986H (2009).
Google Scholar
Guo, S. et al. Engineered living materials based on adhesin-mediated trapping of programmable cells. ACS Synth. Biol. 9, 475–485 (2020).
Google Scholar
Johnson, C. T. et al. Hydrogel delivery of lysostaphin eliminates orthopedic implant infection by Staphylococcus aureus and supports fracture healing. Proc. Natl Acad. Sci. USA 115, E4960–E4969 (2018). Hydrogel-based lysostaphin delivery completely clears orthopaedic implant infection caused by S. aureus, outperforming standard-of-care antibiotic therapy, and restores complete fracture healing in mice.
Google Scholar
Johnson, C. T. et al. Lysostaphin and BMP-2 co-delivery reduces S. aureus infection and regenerates critical-sized segmental bone defects. Sci. Adv. 5, eaaw1228 (2019). Hydrogel-enabled co-delivery of lysostaphin and bone morphogenetic protein 2 eliminates S. aureus infection, promotes bone regeneration to bridge a segmental bone defect and restores the environment at the site of infection to a healthy (non-infected) microenvironment in mice.
Google Scholar
Nelson, D., Loomis, L. & Fischetti, V. A. Prevention and elimination of upper respiratory colonization of mice by group A streptococci by using a bacteriophage lytic enzyme. Proc. Natl Acad. Sci. USA 98, 4107–4112 (2001).
Google Scholar
Portilla, S., Fernández, L., Gutiérrez, D., Rodríguez, A. & García, P. Encapsulation of the antistaphylococcal endolysin LysRODI in pH-sensitive liposomes. Antibiotics 9, 242 (2020).
Google Scholar
Gondil, V. S. et al. Comprehensive evaluation of chitosan nanoparticle based phage lysin delivery system; a novel approach to counter S. pneumoniae infections. Int. J. Pharm. 573, 118850 (2020).
Google Scholar
Liu, S.-y et al. Antimicrobial activity of a quaternary ammonium methacryloxy silicate-containing acrylic resin: a randomised clinical trial. Sci. Rep. 6, 21882 (2016).
Google Scholar
Atar-Froyman, L. et al. Anti-biofilm properties of wound dressing incorporating nonrelease polycationic antimicrobials. Biomaterials 46, 141–148 (2015).
Google Scholar
Hoque, J., Akkapeddi, P., Ghosh, C., Uppu, D. S. S. M. & Haldar, J. A biodegradable polycationic paint that kills bacteria in vitro and in vivo. ACS Appl. Mater. Interfaces 8, 29298–29309 (2016).
Google Scholar
Liu, L. et al. Self-assembled cationic peptide nanoparticles as an efficient antimicrobial agent. Nat. Nanotechnol. 4, 457–463 (2009).
Google Scholar
Chen, Y. et al. Design and synthesis of biocompatible, hemocompatible, and highly selective antimicrobial cationic peptidopolysaccharides via click chemistry. Biomacromolecules 20, 2230–2240 (2019).
Google Scholar
Andrén, O. C. J. et al. Antibiotic-free cationic dendritic hydrogels as surgical-site-infection-inhibiting coatings. Adv. Healthc. Mater. 8, e1801619 (2019).
Google Scholar
Venkatesh, M. et al. Antimicrobial activity and cell selectivity of synthetic and biosynthetic cationic polymers. Antimicrob. Agents Chemother. 61, e00469-17 (2017).
Google Scholar
Nederberg, F. et al. Biodegradable nanostructures with selective lysis of microbial membranes. Nat. Chem. 3, 409–414 (2011).
Google Scholar
Li, J. et al. Block copolymer nanoparticles remove biofilms of drug-resistant gram-positive bacteria by nanoscale bacterial debridement. Nano Lett. 18, 4180–4187 (2018). Nanoparticles facilitate biofilm removal through a process of nanoscale debridement, which is orthogonal to conventional development of resistance trait in bacteria and would have widespread application in treating resistant as well as sensitive strains of bacteria.
Google Scholar
Rahman, M. A. et al. Macromolecular-clustered facial amphiphilic antimicrobials. Nat. Commun. 9, 5231 (2018).
Google Scholar
Lienkamp, K. et al. Antimicrobial polymers prepared by ROMP with unprecedented selectivity: a molecular construction kit approach. J. Am. Chem. Soc. 130, 9836–9843 (2008).
Google Scholar
Ilker, M. F., Nüsslein, K., Tew, G. N. & Coughlin, E. B. Tuning the hemolytic and antibacterial activities of amphiphilic polynorbornene derivatives. J. Am. Chem. Soc. 126, 15870–15875 (2004).
Google Scholar
Engler, A. C. et al. Antimicrobial polycarbonates: investigating the impact of balancing charge and hydrophobicity using a same-centered polymer approach. Biomacromolecules 14, 4331–4339 (2013).
Google Scholar
Chin, W. et al. A macromolecular approach to eradicate multidrug resistant bacterial infections while mitigating drug resistance onset. Nat. Commun. 9, 917 (2018).
Google Scholar
Lam, S. J. et al. Combating multidrug-resistant Gram-negative bacteria with structurally nanoengineered antimicrobial peptide polymers. Nat. Microbiol. 1, 16162 (2016). Structurally nanoengineered AMP polymers display potent activity against a variety of Gram-negative bacteria, including colistin-resistant and multidrug-resistant pathogens, with low cytotoxicity and minimal development of resistance.
Google Scholar
Wang, Y., Yang, Y., Shi, Y., Song, H. & Yu, C. Antibiotic-free antibacterial strategies enabled by nanomaterials: progress and perspectives. Adv. Mater. 32, 1904106 (2020).
Google Scholar
Kirk, J. A. et al. New class of precision antimicrobials redefines role of Clostridium difficile S-layer in virulence and viability. Sci. Transl Med. 9, eaah6813 (2017).
Google Scholar
Arifuzzaman, M. et al. MRGPR-mediated activation of local mast cells clears cutaneous bacterial infection and protects against reinfection. Sci. Adv. 5, eaav0216 (2019).
Google Scholar
Ram, G., Ross, H. F., Novick, R. P., Rodriguez-Pagan, I. & Jiang, D. Conversion of staphylococcal pathogenicity islands to CRISPR-carrying antibacterial agents that cure infections in mice. Nat. Biotechnol. 36, 971–976 (2018).
Google Scholar
Hwang, G. et al. Catalytic antimicrobial robots for biofilm eradication. Sci. Robot. 4, eaaw2388 (2019). Magnetically driven, catalytic antimicrobial robots efficiently and controllably kill, degrade and remove biofilms, and can be developed to fight persistent biofilm infections or mitigate biofouling of medical devices and diverse surfaces.
Google Scholar
Qiao, Y. et al. Treatment of MRSA-infected osteomyelitis using bacterial capturing, magnetically targeted composites with microwave-assisted bacterial killing. Nat. Commun. 11, 4446 (2020).
Google Scholar
Si, Y. et al. Daylight-driven rechargeable antibacterial and antiviral nanofibrous membranes for bioprotective applications. Sci. Adv. 4, eaar5931 (2018).
Google Scholar
Berry, G. C., Bockstaller, M. R. & Matyjaszewski, K. Celebrating 100 years of polymer science. Prog. Polym. Sci. 100, 101193 (2020).
Google Scholar
Zhang, L. et al. Self-assembled lipid–polymer hybrid nanoparticles: a robust drug delivery platform. ACS Nano 2, 1696–1702 (2008).
Google Scholar
Brady, R. A., Mocca, C. P., Plaut, R. D., Takeda, K. & Burns, D. L. Comparison of the immune response during acute and chronic Staphylococcus aureus infection. PLoS ONE 13, e0195342 (2018).
Google Scholar
Hampton, H. G., Watson, B. N. J. & Fineran, P. C. The arms race between bacteria and their phage foes. Nature 577, 327–336 (2020).
Google Scholar
Fothergill, J. L., Neill, D. R., Loman, N., Winstanley, C. & Kadioglu, A. Pseudomonas aeruginosa adaptation in the nasopharyngeal reservoir leads to migration and persistence in the lungs. Nat. Commun. 5, 4780 (2014).
Google Scholar
Fux, C. A., Shirtliff, M., Stoodley, P. & Costerton, J. W. Can laboratory reference strains mirror “real-world” pathogenesis? Trends Microbiol. 13, 58–63 (2005).
Google Scholar
Palmer, K. L., Aye, L. M. & Whiteley, M. Nutritional cues control Pseudomonas aeruginosa multicellular behavior in cystic fibrosis sputum. J. Bacteriol. 189, 8079–8087 (2007).
Google Scholar
Turner, K. H., Wessel, A. K., Palmer, G. C., Murray, J. L. & Whiteley, M. Essential genome of Pseudomonas aeruginosa in cystic fibrosis sputum. Proc. Natl Acad. Sci. USA 112, 4110–4115 (2015).
Google Scholar
Quickel, K. E. Jr, Selden, R., Caldwell, J. R., Nora, N. F. & Schaffner, W. Efficacy and safety of topical lysostaphin treatment of persistent nasal carriage of Staphylococcus aureus. Appl. Microbiol. 22, 446–450 (1971).
Google Scholar
Walsh, S., Shah, A. & Mond, J. Improved pharmacokinetics and reduced antibody reactivity of lysostaphin conjugated to polyethylene glycol. Antimicrob. Agents Chemother. 47, 554–558 (2003).
Google Scholar
Kaur, T. et al. Immunocompatibility of bacteriophages as nanomedicines. J. Nanotechnol. 2012, 247427 (2012).
Google Scholar
Blazanovic, K. et al. Structure-based redesign of lysostaphin yields potent antistaphylococcal enzymes that evade immune cell surveillance. Mol. Ther. Methods Clin. Dev. 2, 15021 (2015).
Google Scholar
Zhao, H. et al. Depletion of T cell epitopes in lysostaphin mitigates anti-drug antibody response and enhances antibacterial efficacy in vivo. Chem. Biol. 22, 629–639 (2015).
Google Scholar
Alcantar, N. A., Aydil, E. S. & Israelachvili, J. N. Polyethylene glycol–coated biocompatible surfaces. J. Biomed. Mater. Res. 51, 343–351 (2000).
Google Scholar
Zhang, P., Sun, F., Liu, S. & Jiang, S. Anti-PEG antibodies in the clinic: Current issues and beyond PEGylation. J. Control. Rel. 244, 184–193 (2016).
Google Scholar
Saifer, M. G. P., Williams, L. D., Sobczyk, M. A., Michaels, S. J. & Sherman, M. R. Selectivity of binding of PEGs and PEG-like oligomers to anti-PEG antibodies induced by methoxyPEG-proteins. Mol. Immunol. 57, 236–246 (2014).
Google Scholar
Qi, Y. et al. A brush-polymer/exendin-4 conjugate reduces blood glucose levels for up to five days and eliminates poly(ethylene glycol) antigenicity. Nat. Biomed. Eng. 1, 0002 (2016).
Google Scholar
Mancuso, F., Shi, J. & Malik, D. J. High throughput manufacturing of bacteriophages using continuous stirred tank bioreactors connected in series to ensure optimum host bacteria physiology for phage production. Viruses 10, 537 (2018).
Google Scholar
Wibowo, D. & Zhao, C.-X. Recent achievements and perspectives for large-scale recombinant production of antimicrobial peptides. Appl. Microbiol. Biotechnol. 103, 659–671 (2019).
Google Scholar
Nour El-Din, H. T. et al. A rapid lysostaphin production approach and a convenient novel lysostaphin loaded nano-emulgel; as a sustainable low-cost methicillin-resistant Staphylococcus aureus combating platform. Biomolecules 10, 435 (2020).
Google Scholar
Szweda, P., Gorczyca, G., Filipkowski, P., Zalewska, M. & Milewski, S. Efficient production of Staphylococcus simulans lysostaphin in a benchtop bioreactor by recombinant Escherichia coli. Prep. Biochem. Biotechnol. 44, 370–381 (2014).
Google Scholar
Mierau, I. et al. Industrial-scale production and purification of a heterologous protein in Lactococcus lactis using the nisin-controlled gene expression system NICE: The case of lysostaphin. Microb. Cell Fact. 4, 15 (2005).
Google Scholar
Hu, C. et al. Industrialization of lipid nanoparticles: From laboratory-scale to large-scale production line. Eur. J. Pharm. Biopharm. 109, 206–213 (2016).
Google Scholar
Fowler, V. G. Jr et al. Exebacase for patients with Staphylococcus aureus bloodstream infection and endocarditis. J. Clin. Invest. 130, 3750–3760 (2020).
Google Scholar
Schuch, R., Nowinski, R. C., Wittekind, M., Lee, H. & Schneider, B. Bacteriophage lysin and antibiotic combinations against gram positive bacteria. US Patent 9889181 (2018).
Stefan, M. New antimicrobial agents. European patent application EP2702070EP2702070 (2014).
Czaplewski, L. et al. Alternatives to antibiotics — a pipeline portfolio review. Lancet Infect. Dis. 16, 239–251 (2016).
Google Scholar
Ting, D. S. J., Beuerman, R. W., Dua, H. S., Lakshminarayanan, R. & Mohammed, I. Strategies in translating the therapeutic potentials of host defense peptides. Front. Immunol. 11, 983 (2020).
Google Scholar
Abdelkader, K., Gerstmans, H., Saafan, A., Dishisha, T. & Briers, Y. The preclinical and clinical progress of bacteriophages and their lytic enzymes: the parts are easier than the whole. Viruses 11, 96 (2019).
Google Scholar
Fridman, O., Goldberg, A., Ronin, I., Shoresh, N. & Balaban, N. Q. Optimization of lag time underlies antibiotic tolerance in evolved bacterial populations. Nature 513, 418–421 (2014).
Google Scholar
DiGiandomenico, A. et al. A multifunctional bispecific antibody protects against Pseudomonas aeruginosa. Sci. Transl Med. 6, 262ra155 (2014).
Google Scholar
Secher, T. et al. The anti-Pseudomonas aeruginosa antibody Panobacumab is efficacious on acute pneumonia in neutropenic mice and has additive effects with meropenem. PLoS ONE 8, e73396 (2013).
Google Scholar
Palmu, A. A. et al. Effect of pneumococcal Haemophilus influenzae protein D conjugate vaccine (PHiD-CV10) on outpatient antimicrobial purchases: a double-blind, cluster randomised phase 3–4 trial. Lancet Infect. Dis. 14, 205–212 (2014).
Google Scholar
Nuccitelli, A. et al. Structure-based approach to rationally design a chimeric protein for an effective vaccine against Group B Streptococcus infections. Proc. Natl Acad. Sci. USA 108, 10278–10283 (2011).
Google Scholar
Hancock, R. E., Nijnik, A. & Philpott, D. J. Modulating immunity as a therapy for bacterial infections. Nat. Rev. Microbiol. 10, 243–254 (2012).
Google Scholar
Scott, M. G. et al. An anti-infective peptide that selectively modulates the innate immune response. Nat. Biotechnol. 25, 465–472 (2007).
Google Scholar
de la Fuente-Núñez, C., Reffuveille, F., Haney, E. F., Straus, S. K. & Hancock, R. E. Broad-spectrum anti-biofilm peptide that targets a cellular stress response. PLoS Pathog. 10, e1004152 (2014).
Google Scholar
Krausgruber, T. et al. Structural cells are key regulators of organ-specific immune responses. Nature 583, 296–302 (2020).
Google Scholar
Todd, E. M., Ramani, R., Szasz, T. P. & Morley, S. C. Inhaled GM-CSF in neonatal mice provides durable protection against bacterial pneumonia. Sci. Adv. 5, eaax3387 (2019).
Google Scholar
Zhang, Z., Nong, J. & Zhong, Y. Antibacterial, anti-inflammatory and neuroprotective layer-by-layer coatings for neural implants. J. Neural Eng. 12, 046015 (2015).
Google Scholar
Bouras, M., Asehnoune, K. & Roquilly, A. Contribution of dendritic cell responses to sepsis-induced immunosuppression and to susceptibility to secondary pneumonia. Front. Immunol. 9, 2590 (2018).
Google Scholar
Hotchkiss, R. S., Monneret, G. & Payen, D. Sepsis-induced immunosuppression: from cellular dysfunctions to immunotherapy. Nat. Rev. Immunol. 13, 862–874 (2013).
Google Scholar
Roquilly, A. et al. Alveolar macrophages are epigenetically altered after inflammation, leading to long-term lung immunoparalysis. Nat. Immunol. 21, 636–648 (2020).
Google Scholar
Lee, J. H., Jeong, S. H., Cha, S.-S. & Lee, S. H. A lack of drugs for antibiotic-resistant Gram-negative bacteria. Nat. Rev. Drug Discov. 6, 938–938 (2007).
Google Scholar
York, A. New drugs for the antibacterial pipeline? Nat. Rev. Microbiol. 18, 61–61 (2020).
Google Scholar
Jault, P. et al. Efficacy and tolerability of a cocktail of bacteriophages to treat burn wounds infected by Pseudomonas aeruginosa (PhagoBurn): a randomised, controlled, double-blind phase 1/2 trial. Lancet Infect. Dis. 19, 35–45 (2019).
Google Scholar
Leitner, L. et al. Bacteriophages for treating urinary tract infections in patients undergoing transurethral resection of the prostate: a randomized, placebo-controlled, double-blind clinical trial. BMC Urol. 17, 90 (2017).
Google Scholar
Leitner, L. et al. Intravesical bacteriophages for treating urinary tract infections in patients undergoing transurethral resection of the prostate: a randomised, placebo-controlled, double-blind clinical trial. Lancet Infect. Dis. 21, 427–436 (2020).
Google Scholar
Jun, S. Y. et al. Pharmacokinetics and tolerance of the phage endolysin-based candidate drug SAL200 after a single intravenous administration among healthy volunteers. Antimicrob. Agents Chemother. 61, e02629-16 (2017).
Google Scholar
Raqib, R. et al. Improved outcome in shigellosis associated with butyrate induction of an endogenous peptide antibiotic. Proc. Natl Acad. Sci. USA 103, 9178–9183 (2006).
Google Scholar
Raqib, R. et al. Efficacy of sodium butyrate adjunct therapy in shigellosis: a randomized, double-blind, placebo-controlled clinical trial. BMC Infect. Dis. 12, 111 (2012).
Google Scholar
Rekha, R. S. et al. Immune responses in the treatment of drug-sensitive pulmonary tuberculosis with phenylbutyrate and vitamin D3 as host directed therapy. BMC Infect. Dis. 18, 303 (2018).
Google Scholar
Melo Ld, V. P. et al. Development of a phage cocktail to control proteus mirabilis catheter-associated urinary tract infections. Front. Microbiol. 7, 1024 (2016).
Meyer, A., Greene, M., Kimmelshue, C. & Cademartiri, R. Stabilization of T4 bacteriophage at acidic and basic pH by adsorption on paper. Colloids Surf. B Biointerfaces 160, 169–176 (2017).
Google Scholar
Fulgione, A. et al. Biomimetic hydroxyapatite nanocrystals are an active carrier for Salmonella bacteriophages. Int. J. Nanomed. 14, 2219–2232 (2019).
Google Scholar
Kłodzińska, S. N. et al. Hyaluronic acid-based nanogels improve in vivo compatibility of the anti-biofilm peptide DJK-5. Nanomedicine 20, 102022 (2019).
Google Scholar
Xue, Q. et al. Anti-infective biomaterials with surface-decorated tachyplesin I. Biomaterials 178, 351–362 (2018).
Google Scholar
Moosazadeh Moghaddam, M. et al. Comparison of the antibacterial effects of a short cationic peptide and 1% silver bioactive glass against extensively drug-resistant bacteria, Pseudomonas aeruginosa and Acinetobacter baumannii, isolated from burn patients. Amino Acids 50, 1617–1628 (2018).
Google Scholar
Chen, H. et al. Versatile antimicrobial peptide-based ZnO quantum dots for in vivo bacteria diagnosis and treatment with high specificity. Biomaterials 53, 532–544 (2015).
Google Scholar
Zhang, Y. et al. Antibacterial and biocompatible cross-linked waterborne polyurethanes containing gemini quaternary ammonium salts. Biomacromolecules 19, 279–287 (2018).
Google Scholar
Chen, Y. F. et al. Star-shaped polypeptides exhibit potent antibacterial activities. Nanoscale 11, 11696–11708 (2019).
Google Scholar
Hesaraki, S., Karimi, M. & Nezafati, N. The synergistic effects of SrF2 nanoparticles, YSZ nanoparticles, and poly-ε-l-lysin on physicomechanical, ion release, and antibacterial-cellular behavior of the flowable dental composites. Mater. Sci. Eng. C 109, 110592 (2020).
Google Scholar
Liu, Y. et al. Immunomimetic designer cells protect mice from MRSA infection. Cell 174, 259–270.e11 (2018).
Google Scholar
Zhu, C. et al. A hydrogel-based localized release of colistin for antimicrobial treatment of burn wound infection. Macromol. Biosci. 17, 1600320 (2017).
Google Scholar
Kuijpers, A. J. et al. In vitro and in vivo evaluation of gelatin-chondroitin sulphate hydrogels for controlled release of antibacterial proteins. Biomaterials 21, 1763–1772 (2000).
Google Scholar
Vipra, A. A. et al. Antistaphylococcal activity of bacteriophage derived chimeric protein P128. BMC Microbiol. 12, 41 (2012).
Google Scholar
Pangule, R. C. et al. Antistaphylococcal nanocomposite films based on enzyme-nanotube conjugates. ACS Nano 4, 3993–4000 (2010).
Google Scholar
Flynn, J., Durack, E., Collins, M. N. & Hudson, S. P. Tuning the strength and swelling of an injectable polysaccharide hydrogel and the subsequent release of a broad spectrum bacteriocin, nisin A. J. Mater. Chem. B 8, 4029–4038 (2020).
Google Scholar
Blair, J. M. A., Webber, M. A., Baylay, A. J., Ogbolu, D. O. & Piddock, L. J. V. Molecular mechanisms of antibiotic resistance. Nat. Rev. Microbiol. 13, 42–51 (2015).
Google Scholar

