Preloader

Biomaterial-based antimicrobial therapies for the treatment of bacterial infections

  • 1.

    Liu, J., Gefen, O., Ronin, I., Bar-Meir, M. & Balaban, N. Q. Effect of tolerance on the evolution of antibiotic resistance under drug combinations. Science 367, 200–204 (2020).

    CAS 
    Article 

    Google Scholar 

  • 2.

    Costerton, J. W., Stewart, P. S. & Greenberg, E. P. Bacterial biofilms: a common cause of persistent infections. Science 284, 1318–1322 (1999).

    CAS 
    Article 

    Google Scholar 

  • 3.

    Koo, H., Allan, R. N., Howlin, R. P., Stoodley, P. & Hall-Stoodley, L. Targeting microbial biofilms: current and prospective therapeutic strategies. Nat. Rev. Microbiol. 15, 740–755 (2017).

    CAS 
    Article 

    Google Scholar 

  • 4.

    Pumart, P. et al. Health and economic impacts of antimicrobial resistance in Thailand. J. Health Serv. Res. Policy 6, 352–360 (2012).

    Google Scholar 

  • 5.

    Sprenger, M. & Fukuda, K. New mechanisms, new worries. Science 351, 1263–1264 (2016).

    CAS 
    Article 

    Google Scholar 

  • 6.

    Edelstein, M. V. et al. Spread of extensively resistant VIM-2-positive ST235 Pseudomonas aeruginosa in Belarus, Kazakhstan, and Russia: a longitudinal epidemiological and clinical study. Lancet Infect. Dis. 13, 867–876 (2013).

    Article 

    Google Scholar 

  • 7.

    Weiner-Lastinger, L. M. et al. Antimicrobial-resistant pathogens associated with adult healthcare-associated infections: Summary of data reported to the National Healthcare Safety Network, 2015–2017. Infect. Control Hosp. Epidemiol. 41, 1–18 (2020).

    Article 

    Google Scholar 

  • 8.

    Weiner-Lastinger, L. M. et al. Antimicrobial-resistant pathogens associated with pediatric healthcare-associated infections: Summary of data reported to the National Healthcare Safety Network, 2015–2017. Infect. Control Hosp. Epidemiol. 41, 19–30 (2020).

    Article 

    Google Scholar 

  • 9.

    Weiner, L. M. et al. Antimicrobial-resistant pathogens associated with healthcare-associated infections: summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2011–2014. Infect. Control Hosp. Epidemiol. 37, 1288–1301 (2016).

    Article 

    Google Scholar 

  • 10.

    Levin-Reisman, I. et al. Antibiotic tolerance facilitates the evolution of resistance. Science 355, 826–830 (2017).

    CAS 
    Article 

    Google Scholar 

  • 11.

    Langdon, A., Crook, N. & Dantas, G. The effects of antibiotics on the microbiome throughout development and alternative approaches for therapeutic modulation. Genome Med. 8, 39 (2016).

    Article 
    CAS 

    Google Scholar 

  • 12.

    van Santen, K. L. et al. The standardized antimicrobial administration ratio: a new metric for measuring and comparing antibiotic use. Clin. Infect. Dis. 67, 179–185 (2018).

    Article 

    Google Scholar 

  • 13.

    Dedrick, R. M. et al. Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant Mycobacterium abscessus. Nat. Med. 25, 730–733 (2019).

    CAS 
    Article 

    Google Scholar 

  • 14.

    Schuch, R., Nelson, D. & Fischetti, V. A. A bacteriolytic agent that detects and kills Bacillus anthracis. Nature 418, 884–889 (2002).

    CAS 
    Article 

    Google Scholar 

  • 15.

    Loeffler, J. M. & Fischetti, V. A. Synergistic lethal effect of a combination of phage lytic enzymes with different activities on penicillin-sensitive and -resistant Streptococcus pneumoniae strains. Antimicrob. Agents Chemother. 47, 375–377 (2003).

    CAS 
    Article 

    Google Scholar 

  • 16.

    Chen, C. H. & Lu, T. K. Development and challenges of antimicrobial peptides for therapeutic applications. Antibiotics 9, 24 (2020).

    CAS 
    Article 

    Google Scholar 

  • 17.

    Usmani, S. S. et al. THPdb: Database of FDA-approved peptide and protein therapeutics. PLoS ONE 12, e0181748 (2017).

    Article 
    CAS 

    Google Scholar 

  • 18.

    Donlan, R. M. Preventing biofilms of clinically relevant organisms using bacteriophage. Trends Microbiol. 17, 66–72 (2009).

    CAS 
    Article 

    Google Scholar 

  • 19.

    Labrie, S. J., Samson, J. E. & Moineau, S. Bacteriophage resistance mechanisms. Nat. Rev. Microbiol. 8, 317–327 (2010).

    CAS 
    Article 

    Google Scholar 

  • 20.

    Dufour, N., Delattre, R., Ricard, J. D. & Debarbieux, L. The lysis of pathogenic Escherichia coli by bacteriophages releases less endotoxin than by β-lactams. Clin. Infect. Dis. 64, 1582–1588 (2017).

    CAS 
    Article 

    Google Scholar 

  • 21.

    Cho, I. & Blaser, M. J. The human microbiome: at the interface of health and disease. Nat. Rev. Genet. 13, 260–270 (2012).

    CAS 
    Article 

    Google Scholar 

  • 22.

    Schooley, R. T. et al. Development and use of personalized bacteriophage-based therapeutic cocktails to treat a patient with a disseminated resistant Acinetobacter baumannii infection. Antimicrob. Agents Chemother. 61, e00954-17 (2017).

    Article 

    Google Scholar 

  • 23.

    Jennes, S. et al. Use of bacteriophages in the treatment of colistin-only-sensitive Pseudomonas aeruginosa septicaemia in a patient with acute kidney injury — a case report. Crit. Care 21, 129 (2017).

    Article 

    Google Scholar 

  • 24.

    Wroe, J. A., Johnson, C. T. & García, A. J. Bacteriophage delivering hydrogels reduce biofilm formation in vitro and infection in vivo. J. Biomed. Mater. Res. A 108, 39–49 (2020).

    CAS 
    Article 

    Google Scholar 

  • 25.

    Meurice, E. et al. New antibacterial microporous CaP materials loaded with phages for prophylactic treatment in bone surgery. J. Mater. Sci. Mater. Med. 23, 2445–2452 (2012).

    CAS 
    Article 

    Google Scholar 

  • 26.

    Barros, J. A. R. et al. Encapsulated bacteriophages in alginate-nanohydroxyapatite hydrogel as a novel delivery system to prevent orthopedic implant-associated infections. Nanomedicine 24, 102145 (2020).

    CAS 
    Article 

    Google Scholar 

  • 27.

    Kaur, S., Harjai, K. & Chhibber, S. In vivo assessment of phage and linezolid based implant coatings for treatment of methicillin resistant S. aureus (MRSA) mediated orthopaedic device related infections. PLoS ONE 11, e0157626 (2016).

    Article 
    CAS 

    Google Scholar 

  • 28.

    Carrigy, N. B. et al. Prophylaxis of Mycobacterium tuberculosis H37Rv infection in a preclinical mouse model via inhalation of nebulized bacteriophage D29. Antimicrob. Agents Chemother. 63, e00871-19 (2019).

    Article 

    Google Scholar 

  • 29.

    Prazak, J. et al. Nebulized bacteriophages for prophylaxis of experimental ventilator-associated pneumonia due to methicillin-resistant Staphylococcus aureus. Crit. Care Med. 48, 1042–1046 (2020).

    CAS 
    Article 

    Google Scholar 

  • 30.

    Golshahi, L., Lynch, K. H., Dennis, J. J. & Finlay, W. H. In vitro lung delivery of bacteriophages KS4-M and ΦKZ using dry powder inhalers for treatment of Burkholderia cepacia complex and Pseudomonas aeruginosa infections in cystic fibrosis. J. Appl. Microbiol. 110, 106–117 (2011).

    CAS 
    Article 

    Google Scholar 

  • 31.

    Singla, S., Harjai, K., Katare, O. P. & Chhibber, S. Bacteriophage-loaded nanostructured lipid carrier: improved pharmacokinetics mediates effective resolution of Klebsiella pneumoniae-induced lobar pneumonia. J. Infect. Dis. 212, 325–334 (2015).

    CAS 
    Article 

    Google Scholar 

  • 32.

    Agarwal, R. et al. Inhaled bacteriophage-loaded polymeric microparticles ameliorate acute lung infections. Nat. Biomed. Eng. 2, 841–849 (2018). Polymeric microparticles facilitate delivery of bacteriophages to mitigate bacterial lung infections in wild-type and cystic fibrosis transgenic mice.

    CAS 
    Article 

    Google Scholar 

  • 33.

    Vinner, G. K., Richards, K., Leppanen, M., Sagona, A. P. & Malik, D. J. Microencapsulation of enteric bacteriophages in a pH-responsive solid oral dosage formulation using a scalable membrane emulsification process. Pharmaceutics 11, 475 (2019).

    CAS 
    Article 

    Google Scholar 

  • 34.

    Vinner, G. K., Vladisavljević, G. T., Clokie, M. R. J. & Malik, D. J. Microencapsulation of Clostridium difficile specific bacteriophages using microfluidic glass capillary devices for colon delivery using pH triggered release. PLoS ONE 12, e0186239 (2017).

    Article 
    CAS 

    Google Scholar 

  • 35.

    Thakral, S., Thakral, N. K. & Majumdar, D. K. Eudragit®: a technology evaluation. Expert Opin. Drug Deliv. 10, 131–149 (2013).

    CAS 
    Article 

    Google Scholar 

  • 36.

    Ma, Y. P. et al. Enhanced alginate microspheres as means of oral delivery of bacteriophage for reducing Staphylococcus aureus intestinal carriage. Food Hydrocoll. 26, 434–440 (2012).

    CAS 
    Article 

    Google Scholar 

  • 37.

    Colom, J. et al. Microencapsulation with alginate/CaCO3: A strategy for improved phage therapy. Sci. Rep. 7, 41441 (2017).

    CAS 
    Article 

    Google Scholar 

  • 38.

    Adamu Ahmad, K., Sabo Mohammed, A. & Abas, F. Chitosan nanoparticles as carriers for the delivery of ΦKAZ14 bacteriophage for oral biological control of colibacillosis in chickens. Molecules 21, 256 (2016).

    Article 
    CAS 

    Google Scholar 

  • 39.

    Rastogi, V., Yadav, P., Verma, A. & Pandit, J. K. Ex vivo and in vivo evaluation of microemulsion based transdermal delivery of E. coli specific T4 bacteriophage: A rationale approach to treat bacterial infection. Eur. J. Pharm. Sci. 107, 168–182 (2017).

    CAS 
    Article 

    Google Scholar 

  • 40.

    Jain, S., Chaudhari, B. H. & Swarnakar, N. K. Preparation and characterization of niosomal gel for iontophoresis mediated transdermal delivery of isosorbide dinitrate. Drug Deliv. Transl Res. 1, 309–321 (2011).

    CAS 
    Article 

    Google Scholar 

  • 41.

    Sarhan, W. A. & Azzazy, H. M. Apitherapeutics and phage-loaded nanofibers as wound dressings with enhanced wound healing and antibacterial activity. Nanomedicine 12, 2055–2067 (2017).

    CAS 
    Article 

    Google Scholar 

  • 42.

    Cheng, W. et al. Incorporation of bacteriophages in polycaprolactone/collagen fibers for antibacterial hemostatic dual-function. J. Biomed. Mater. Res. Part B 106, 2588–2595 (2018).

    CAS 
    Article 

    Google Scholar 

  • 43.

    Chhibber, S., Kaur, J. & Kaur, S. Liposome entrapment of bacteriophages improves wound healing in a diabetic mouse MRSA infection. Front. Microbiol. 9, 561 (2018).

    Article 

    Google Scholar 

  • 44.

    Chadha, P., Katare, O. P. & Chhibber, S. Liposome loaded phage cocktail: Enhanced therapeutic potential in resolving Klebsiella pneumoniae mediated burn wound infections. Burns 43, 1532–1543 (2017).

    Article 

    Google Scholar 

  • 45.

    Rubalskii, E. et al. Fibrin glue as a local drug-delivery system for bacteriophage PA5. Sci. Rep. 9, 2091 (2019).

    Article 
    CAS 

    Google Scholar 

  • 46.

    Centers for Disease Control and Prevention. Catheter-associated urinary tract infections (CAUTI). CDC https://www.cdc.gov/hai/ca_uti/uti.html (2015).

  • 47.

    Lehman, S. M. & Donlan, R. M. Bacteriophage-mediated control of a two-species biofilm formed by microorganisms causing catheter-associated urinary tract infections in an in vitro urinary catheter model. Antimicrob. Agents Chemother. 59, 1127–1137 (2015).

    Article 
    CAS 

    Google Scholar 

  • 48.

    Liao, K. S., Lehman, S. M., Tweardy, D. J., Donlan, R. M. & Trautner, B. W. Bacteriophages are synergistic with bacterial interference for the prevention of Pseudomonas aeruginosa biofilm formation on urinary catheters. J. Appl. Microbiol. 113, 1530–1539 (2012).

    CAS 
    Article 

    Google Scholar 

  • 49.

    Milo, S. et al. Prevention of encrustation and blockage of urinary catheters by Proteus mirabilis via pH-triggered release of bacteriophage. J. Mater. Chem. B 5, 5403–5411 (2017).

    CAS 
    Article 

    Google Scholar 

  • 50.

    Lungren, M. P. et al. Bacteriophage K antimicrobial-lock technique for treatment of Staphylococcus aureus central venous catheter-related infection: a leporine model efficacy analysis. J. Vasc. Interv. Radiol. 25, 1627–1632 (2014).

    Article 

    Google Scholar 

  • 51.

    Curtin, J. J. & Donlan, R. M. Using bacteriophages to reduce formation of catheter-associated biofilms by Staphylococcus epidermidis. Antimicrob. Agents Chemother. 50, 1268–1275 (2006).

    CAS 
    Article 

    Google Scholar 

  • 52.

    Fu, W. et al. Bacteriophage cocktail for the prevention of biofilm formation by Pseudomonas aeruginosa on catheters in an in vitro model system. Antimicrob. Agents Chemother. 54, 397–404 (2010).

    CAS 
    Article 

    Google Scholar 

  • 53.

    Mookherjee, N., Anderson, M. A., Haagsman, H. P. & Davidson, D. J. Antimicrobial host defence peptides: functions and clinical potential. Nat. Rev. Drug Discov. 19, 311–332 (2020).

    CAS 
    Article 

    Google Scholar 

  • 54.

    Di, Y. P. et al. Enhanced therapeutic index of an antimicrobial peptide in mice by increasing safety and activity against multidrug-resistant bacteria. Sci. Adv. 6, eaay6817 (2020).

    CAS 
    Article 

    Google Scholar 

  • 55.

    Lazzaro, B. P., Zasloff, M. & Rolff, J. Antimicrobial peptides: Application informed by evolution. Science 368, eaau5480 (2020).

    CAS 
    Article 

    Google Scholar 

  • 56.

    Gordon, Y. J., Romanowski, E. G. & McDermott, A. M. A review of antimicrobial peptides and their therapeutic potential as anti-infective drugs. Curr. Eye Res. 30, 505–515 (2005).

    CAS 
    Article 

    Google Scholar 

  • 57.

    Bacalum, M. & Radu, M. Cationic antimicrobial peptides cytotoxicity on mammalian cells: an analysis using therapeutic index integrative concept. Int. J. Pept. Res. Ther. 21, 47–55 (2015).

    CAS 
    Article 

    Google Scholar 

  • 58.

    Rai, A. et al. One-step synthesis of high-density peptide-conjugated gold nanoparticles with antimicrobial efficacy in a systemic infection model. Biomaterials 85, 99–110 (2016).

    CAS 
    Article 

    Google Scholar 

  • 59.

    Qi, G. B., Zhang, D., Liu, F. H., Qiao, Z. Y. & Wang, H. An “on-site transformation” strategy for treatment of bacterial infection. Adv. Mater. 29, 1703461 (2017).

    Article 
    CAS 

    Google Scholar 

  • 60.

    Kwon, E. J. et al. Porous silicon nanoparticle delivery of tandem peptide anti-infectives for the treatment of Pseudomonas aeruginosa lung infections. Adv. Mater. 29, 1701527 (2017).

    Article 
    CAS 

    Google Scholar 

  • 61.

    Lim, K. et al. Anhydrous polymer-based coating with sustainable controlled release functionality for facile, efficacious impregnation, and delivery of antimicrobial peptides. Biotechnol. Bioeng. 115, 2000–2012 (2018).

    CAS 
    Article 

    Google Scholar 

  • 62.

    Qi, F. et al. Practical preparation of infection-resistant biomedical surfaces from antimicrobial β-peptide polymers. ACS Appl. Mater. Interfaces 11, 18907–18913 (2019).

    CAS 
    Article 

    Google Scholar 

  • 63.

    Zhuk, I. et al. Self-defensive layer-by-layer films with bacteria-triggered antibiotic release. ACS Nano 8, 7733–7745 (2014).

    CAS 
    Article 

    Google Scholar 

  • 64.

    Zhang, X.-Y. et al. Antimicrobial peptide-conjugated hierarchical antifouling polymer brushes for functionalized catheter surfaces. Biomacromolecules 20, 4171–4179 (2019).

    CAS 
    Article 

    Google Scholar 

  • 65.

    Yu, K. et al. Anti-adhesive antimicrobial peptide coating prevents catheter associated infection in a mouse urinary infection model. Biomaterials 116, 69–81 (2017).

    CAS 
    Article 

    Google Scholar 

  • 66.

    Gao, Q. et al. Rationally designed dual functional block copolymers for bottlebrush-like coatings: In vitro and in vivo antimicrobial, antibiofilm, and antifouling properties. Acta Biomater. 51, 112–124 (2017).

    CAS 
    Article 

    Google Scholar 

  • 67.

    Chen, R., Willcox, M. D., Ho, K. K., Smyth, D. & Kumar, N. Antimicrobial peptide melimine coating for titanium and its in vivo antibacterial activity in rodent subcutaneous infection models. Biomaterials 85, 142–151 (2016).

    CAS 
    Article 

    Google Scholar 

  • 68.

    Shen, X. et al. Antibacterial and osteogenesis performances of LL37-loaded titania nanopores in vitro and in vivo. Int. J. Nanomed. 14, 3043–3054 (2019).

    CAS 
    Article 

    Google Scholar 

  • 69.

    Song, Y.-Y., Schmidt-Stein, F., Bauer, S. & Schmuki, P. Amphiphilic TiO2 nanotube arrays: an actively controllable drug delivery system. J. Am. Chem. Soc. 131, 4230–4232 (2009).

    CAS 
    Article 

    Google Scholar 

  • 70.

    Kazemzadeh-Narbat, M. et al. Multilayered coating on titanium for controlled release of antimicrobial peptides for the prevention of implant-associated infections. Biomaterials 34, 5969–5977 (2013).

    CAS 
    Article 

    Google Scholar 

  • 71.

    Shi, J. et al. Biological and immunotoxicity evaluation of antimicrobial peptide-loaded coatings using a layer-by-layer process on titanium. Sci. Rep. 5, 16336 (2015).

    CAS 
    Article 

    Google Scholar 

  • 72.

    Kazemzadeh-Narbat, M. et al. Drug release and bone growth studies of antimicrobial peptide-loaded calcium phosphate coating on titanium. J. Biomed. Mater. Res. Part B 100, 1344–1352 (2012).

    Article 
    CAS 

    Google Scholar 

  • 73.

    Yang, G. et al. Sustained release of antimicrobial peptide from self-assembling hydrogel enhanced osteogenesis. J. Biomater. Sci. Polym. Ed. 29, 1812–1824 (2018).

    CAS 
    Article 

    Google Scholar 

  • 74.

    Yuan, X. et al. Multifunctional sulfonated polyetheretherketone coating with beta-defensin-14 for yielding durable and broad-spectrum antibacterial activity and osseointegration. Acta Biomater. 86, 323–337 (2019).

    CAS 
    Article 

    Google Scholar 

  • 75.

    Cormier, A. R., Pang, X., Zimmerman, M. I., Zhou, H.-X. & Paravastu, A. K. Molecular structure of RADA16-I designer self-assembling peptide nanofibers. ACS Nano 7, 7562–7572 (2013).

    CAS 
    Article 

    Google Scholar 

  • 76.

    Briuglia, M. L., Urquhart, A. J. & Lamprou, D. A. Sustained and controlled release of lipophilic drugs from a self-assembling amphiphilic peptide hydrogel. Int. J. Pharm. 474, 103–111 (2014).

    CAS 
    Article 

    Google Scholar 

  • 77.

    Irwansyah, I. et al. Gram-positive antimicrobial activity of amino acid-based hydrogels. Adv. Mater. 27, 648–654 (2015).

    CAS 
    Article 

    Google Scholar 

  • 78.

    Lohmann, N. et al. Glycosaminoglycan-based hydrogels capture inflammatory chemokines and rescue defective wound healing in mice. Sci. Transl Med. 9, eaai9044 (2017).

    Article 

    Google Scholar 

  • 79.

    Li, J., Liang, S., Yan, Y., Tian, X. & Li, X. O-mannosylation affords a glycopeptide hydrogel with inherent antibacterial activities against E. coli via multivalent interactions between lectins and supramolecular assemblies. Macromol. Biosci. 19, e1900124 (2019).

    Article 
    CAS 

    Google Scholar 

  • 80.

    Xie, Z. et al. Design of antimicrobial peptides conjugated biodegradable citric acid derived hydrogels for wound healing. J. Biomed. Mater. Res. A 103, 3907–3918 (2015).

    CAS 
    Article 

    Google Scholar 

  • 81.

    Liu, M. et al. Fabrication of KR-12 peptide-containing hyaluronic acid immobilized fibrous eggshell membrane effectively kills multi-drug-resistant bacteria, promotes angiogenesis and accelerates re-epithelialization. Int. J. Nanomed. 14, 3345–3360 (2019).

    CAS 
    Article 

    Google Scholar 

  • 82.

    Obuobi, S. et al. Facile and efficient encapsulation of antimicrobial peptides via crosslinked DNA nanostructures and their application in wound therapy. J. Control. Rel. 313, 120–130 (2019).

    CAS 
    Article 

    Google Scholar 

  • 83.

    Ch’ng, J.-H., Chong, K. K. L., Lam, L. N., Wong, J. J. & Kline, K. A. Biofilm-associated infection by enterococci. Nat. Rev. Microbiol. 17, 82–94 (2019).

    Article 
    CAS 

    Google Scholar 

  • 84.

    Wolcott, R. D., Rhoads, D. D. & Dowd, S. E. Biofilms and chronic wound inflammation. J. Wound Care 17, 333–341 (2008).

    CAS 
    Article 

    Google Scholar 

  • 85.

    Maiden, M. M., Zachos, M. P. & Waters, C. M. Hydrogels embedded with melittin and tobramycin are effective against Pseudomonas aeruginosa biofilms in an animal wound model. Front. Microbiol. 10, 1348 (2019).

    Article 

    Google Scholar 

  • 86.

    Wang, J. et al. pH-Switchable antimicrobial nanofiber networks of hydrogel eradicate biofilm and rescue stalled healing in chronic wounds. ACS Nano 13, 11686–11697 (2019). A pH-responsive hydrogel that displays antimicrobial activity at an acidic pH, which is characteristic for the pathological environment of infected chronic wounds, erradicates biofilms and facilitates wound healing.

    CAS 
    Article 

    Google Scholar 

  • 87.

    Puthia, M. et al. A dual-action peptide-containing hydrogel targets wound infection and inflammation. Sci. Transl Med. 12, eaax6601 (2020). A TCP-25-loaded hydrogel reduces bacterial counts and inflammation in murine subcutaneous wound and porcine partial thickness wound models, and improves wound healing.

    CAS 
    Article 

    Google Scholar 

  • 88.

    Dutta, D., Ozkan, J. & Willcox, M. D. P. Biocompatibility of antimicrobial melimine lenses: rabbit and human studies. Optom. Vis. Sci. 91, 570–581 (2014).

    Article 

    Google Scholar 

  • 89.

    Cole, N. et al. In vivo performance of melimine as an antimicrobial coating for contact lenses in models of CLARE and CLPU. Invest. Ophthalmol. Vis. Sci. 51, 390–395 (2010).

    Article 

    Google Scholar 

  • 90.

    Dutta, D., Vijay, A. K., Kumar, N. & Willcox, M. D. Melimine-coated antimicrobial contact lenses reduce microbial keratitis in an animal model. Invest. Ophthalmol. Vis. Sci. 57, 5616–5624 (2016).

    CAS 
    Article 

    Google Scholar 

  • 91.

    Dutta, D. et al. Development of silicone hydrogel antimicrobial contact lenses with Mel4 peptide coating. Optom. Vis. Sci. 95, 937–946 (2018).

    Article 

    Google Scholar 

  • 92.

    Gonzalez-Delgado, L. S. et al. Two-site recognition of Staphylococcus aureus peptidoglycan by lysostaphin SH3b. Nat. Chem. Biol. 16, 24–30 (2020).

    CAS 
    Article 

    Google Scholar 

  • 93.

    Cui, F. et al. Development of chitosan-collagen hydrogel incorporated with lysostaphin (CCHL) burn dressing with anti-methicillin-resistant Staphylococcus aureus and promotion wound healing properties. Drug Deliv. 18, 173–180 (2011).

    CAS 
    Article 

    Google Scholar 

  • 94.

    Windolf, C. D., Lögters, T., Scholz, M., Windolf, J. & Flohé, S. Lysostaphin-coated titan-implants preventing localized osteitis by Staphylococcus aureus in a mouse model. PLoS ONE 9, e115940 (2014).

    Article 
    CAS 

    Google Scholar 

  • 95.

    Xue, B. et al. A novel controlled-release system for antibacterial enzyme lysostaphin delivery using hydroxyapatite/chitosan composite bone cement. PLoS ONE 9, e113797 (2014).

    Article 
    CAS 

    Google Scholar 

  • 96.

    Nithya, S. et al. Preparation, characterization and efficacy of lysostaphin-chitosan gel against Staphylococcus aureus. Int. J. Biol. Macromol. 110, 157–166 (2018).

    CAS 
    Article 

    Google Scholar 

  • 97.

    Abulateefeh, S. R. et al. Facile synthesis of responsive nanoparticles with reversible, tunable and rapid thermal transitions from biocompatible constituents. Chem. Commun. https://doi.org/10.1039/B911986H (2009).

    Article 

    Google Scholar 

  • 98.

    Guo, S. et al. Engineered living materials based on adhesin-mediated trapping of programmable cells. ACS Synth. Biol. 9, 475–485 (2020).

    CAS 
    Article 

    Google Scholar 

  • 99.

    Johnson, C. T. et al. Hydrogel delivery of lysostaphin eliminates orthopedic implant infection by Staphylococcus aureus and supports fracture healing. Proc. Natl Acad. Sci. USA 115, E4960–E4969 (2018). Hydrogel-based lysostaphin delivery completely clears orthopaedic implant infection caused by S. aureus, outperforming standard-of-care antibiotic therapy, and restores complete fracture healing in mice.

    CAS 
    Article 

    Google Scholar 

  • 100.

    Johnson, C. T. et al. Lysostaphin and BMP-2 co-delivery reduces S. aureus infection and regenerates critical-sized segmental bone defects. Sci. Adv. 5, eaaw1228 (2019). Hydrogel-enabled co-delivery of lysostaphin and bone morphogenetic protein 2 eliminates S. aureus infection, promotes bone regeneration to bridge a segmental bone defect and restores the environment at the site of infection to a healthy (non-infected) microenvironment in mice.

    CAS 
    Article 

    Google Scholar 

  • 101.

    Nelson, D., Loomis, L. & Fischetti, V. A. Prevention and elimination of upper respiratory colonization of mice by group A streptococci by using a bacteriophage lytic enzyme. Proc. Natl Acad. Sci. USA 98, 4107–4112 (2001).

    CAS 
    Article 

    Google Scholar 

  • 102.

    Portilla, S., Fernández, L., Gutiérrez, D., Rodríguez, A. & García, P. Encapsulation of the antistaphylococcal endolysin LysRODI in pH-sensitive liposomes. Antibiotics 9, 242 (2020).

    CAS 
    Article 

    Google Scholar 

  • 103.

    Gondil, V. S. et al. Comprehensive evaluation of chitosan nanoparticle based phage lysin delivery system; a novel approach to counter S. pneumoniae infections. Int. J. Pharm. 573, 118850 (2020).

    CAS 
    Article 

    Google Scholar 

  • 104.

    Liu, S.-y et al. Antimicrobial activity of a quaternary ammonium methacryloxy silicate-containing acrylic resin: a randomised clinical trial. Sci. Rep. 6, 21882 (2016).

    CAS 
    Article 

    Google Scholar 

  • 105.

    Atar-Froyman, L. et al. Anti-biofilm properties of wound dressing incorporating nonrelease polycationic antimicrobials. Biomaterials 46, 141–148 (2015).

    CAS 
    Article 

    Google Scholar 

  • 106.

    Hoque, J., Akkapeddi, P., Ghosh, C., Uppu, D. S. S. M. & Haldar, J. A biodegradable polycationic paint that kills bacteria in vitro and in vivo. ACS Appl. Mater. Interfaces 8, 29298–29309 (2016).

    CAS 
    Article 

    Google Scholar 

  • 107.

    Liu, L. et al. Self-assembled cationic peptide nanoparticles as an efficient antimicrobial agent. Nat. Nanotechnol. 4, 457–463 (2009).

    CAS 
    Article 

    Google Scholar 

  • 108.

    Chen, Y. et al. Design and synthesis of biocompatible, hemocompatible, and highly selective antimicrobial cationic peptidopolysaccharides via click chemistry. Biomacromolecules 20, 2230–2240 (2019).

    CAS 
    Article 

    Google Scholar 

  • 109.

    Andrén, O. C. J. et al. Antibiotic-free cationic dendritic hydrogels as surgical-site-infection-inhibiting coatings. Adv. Healthc. Mater. 8, e1801619 (2019).

    Article 
    CAS 

    Google Scholar 

  • 110.

    Venkatesh, M. et al. Antimicrobial activity and cell selectivity of synthetic and biosynthetic cationic polymers. Antimicrob. Agents Chemother. 61, e00469-17 (2017).

    Article 

    Google Scholar 

  • 111.

    Nederberg, F. et al. Biodegradable nanostructures with selective lysis of microbial membranes. Nat. Chem. 3, 409–414 (2011).

    CAS 
    Article 

    Google Scholar 

  • 112.

    Li, J. et al. Block copolymer nanoparticles remove biofilms of drug-resistant gram-positive bacteria by nanoscale bacterial debridement. Nano Lett. 18, 4180–4187 (2018). Nanoparticles facilitate biofilm removal through a process of nanoscale debridement, which is orthogonal to conventional development of resistance trait in bacteria and would have widespread application in treating resistant as well as sensitive strains of bacteria.

    CAS 
    Article 

    Google Scholar 

  • 113.

    Rahman, M. A. et al. Macromolecular-clustered facial amphiphilic antimicrobials. Nat. Commun. 9, 5231 (2018).

    CAS 
    Article 

    Google Scholar 

  • 114.

    Lienkamp, K. et al. Antimicrobial polymers prepared by ROMP with unprecedented selectivity: a molecular construction kit approach. J. Am. Chem. Soc. 130, 9836–9843 (2008).

    CAS 
    Article 

    Google Scholar 

  • 115.

    Ilker, M. F., Nüsslein, K., Tew, G. N. & Coughlin, E. B. Tuning the hemolytic and antibacterial activities of amphiphilic polynorbornene derivatives. J. Am. Chem. Soc. 126, 15870–15875 (2004).

    CAS 
    Article 

    Google Scholar 

  • 116.

    Engler, A. C. et al. Antimicrobial polycarbonates: investigating the impact of balancing charge and hydrophobicity using a same-centered polymer approach. Biomacromolecules 14, 4331–4339 (2013).

    CAS 
    Article 

    Google Scholar 

  • 117.

    Chin, W. et al. A macromolecular approach to eradicate multidrug resistant bacterial infections while mitigating drug resistance onset. Nat. Commun. 9, 917 (2018).

    Article 
    CAS 

    Google Scholar 

  • 118.

    Lam, S. J. et al. Combating multidrug-resistant Gram-negative bacteria with structurally nanoengineered antimicrobial peptide polymers. Nat. Microbiol. 1, 16162 (2016). Structurally nanoengineered AMP polymers display potent activity against a variety of Gram-negative bacteria, including colistin-resistant and multidrug-resistant pathogens, with low cytotoxicity and minimal development of resistance.

    CAS 
    Article 

    Google Scholar 

  • 119.

    Wang, Y., Yang, Y., Shi, Y., Song, H. & Yu, C. Antibiotic-free antibacterial strategies enabled by nanomaterials: progress and perspectives. Adv. Mater. 32, 1904106 (2020).

    CAS 
    Article 

    Google Scholar 

  • 120.

    Kirk, J. A. et al. New class of precision antimicrobials redefines role of Clostridium difficile S-layer in virulence and viability. Sci. Transl Med. 9, eaah6813 (2017).

    Article 
    CAS 

    Google Scholar 

  • 121.

    Arifuzzaman, M. et al. MRGPR-mediated activation of local mast cells clears cutaneous bacterial infection and protects against reinfection. Sci. Adv. 5, eaav0216 (2019).

    Article 
    CAS 

    Google Scholar 

  • 122.

    Ram, G., Ross, H. F., Novick, R. P., Rodriguez-Pagan, I. & Jiang, D. Conversion of staphylococcal pathogenicity islands to CRISPR-carrying antibacterial agents that cure infections in mice. Nat. Biotechnol. 36, 971–976 (2018).

    CAS 
    Article 

    Google Scholar 

  • 123.

    Hwang, G. et al. Catalytic antimicrobial robots for biofilm eradication. Sci. Robot. 4, eaaw2388 (2019). Magnetically driven, catalytic antimicrobial robots efficiently and controllably kill, degrade and remove biofilms, and can be developed to fight persistent biofilm infections or mitigate biofouling of medical devices and diverse surfaces.

    Article 

    Google Scholar 

  • 124.

    Qiao, Y. et al. Treatment of MRSA-infected osteomyelitis using bacterial capturing, magnetically targeted composites with microwave-assisted bacterial killing. Nat. Commun. 11, 4446 (2020).

    CAS 
    Article 

    Google Scholar 

  • 125.

    Si, Y. et al. Daylight-driven rechargeable antibacterial and antiviral nanofibrous membranes for bioprotective applications. Sci. Adv. 4, eaar5931 (2018).

    Article 
    CAS 

    Google Scholar 

  • 126.

    Berry, G. C., Bockstaller, M. R. & Matyjaszewski, K. Celebrating 100 years of polymer science. Prog. Polym. Sci. 100, 101193 (2020).

    CAS 
    Article 

    Google Scholar 

  • 127.

    Zhang, L. et al. Self-assembled lipid–polymer hybrid nanoparticles: a robust drug delivery platform. ACS Nano 2, 1696–1702 (2008).

    CAS 
    Article 

    Google Scholar 

  • 128.

    Brady, R. A., Mocca, C. P., Plaut, R. D., Takeda, K. & Burns, D. L. Comparison of the immune response during acute and chronic Staphylococcus aureus infection. PLoS ONE 13, e0195342 (2018).

    Article 
    CAS 

    Google Scholar 

  • 129.

    Hampton, H. G., Watson, B. N. J. & Fineran, P. C. The arms race between bacteria and their phage foes. Nature 577, 327–336 (2020).

    CAS 
    Article 

    Google Scholar 

  • 130.

    Fothergill, J. L., Neill, D. R., Loman, N., Winstanley, C. & Kadioglu, A. Pseudomonas aeruginosa adaptation in the nasopharyngeal reservoir leads to migration and persistence in the lungs. Nat. Commun. 5, 4780 (2014).

    CAS 
    Article 

    Google Scholar 

  • 131.

    Fux, C. A., Shirtliff, M., Stoodley, P. & Costerton, J. W. Can laboratory reference strains mirror “real-world” pathogenesis? Trends Microbiol. 13, 58–63 (2005).

    CAS 
    Article 

    Google Scholar 

  • 132.

    Palmer, K. L., Aye, L. M. & Whiteley, M. Nutritional cues control Pseudomonas aeruginosa multicellular behavior in cystic fibrosis sputum. J. Bacteriol. 189, 8079–8087 (2007).

    CAS 
    Article 

    Google Scholar 

  • 133.

    Turner, K. H., Wessel, A. K., Palmer, G. C., Murray, J. L. & Whiteley, M. Essential genome of Pseudomonas aeruginosa in cystic fibrosis sputum. Proc. Natl Acad. Sci. USA 112, 4110–4115 (2015).

    CAS 
    Article 

    Google Scholar 

  • 134.

    Quickel, K. E. Jr, Selden, R., Caldwell, J. R., Nora, N. F. & Schaffner, W. Efficacy and safety of topical lysostaphin treatment of persistent nasal carriage of Staphylococcus aureus. Appl. Microbiol. 22, 446–450 (1971).

    Article 

    Google Scholar 

  • 135.

    Walsh, S., Shah, A. & Mond, J. Improved pharmacokinetics and reduced antibody reactivity of lysostaphin conjugated to polyethylene glycol. Antimicrob. Agents Chemother. 47, 554–558 (2003).

    CAS 
    Article 

    Google Scholar 

  • 136.

    Kaur, T. et al. Immunocompatibility of bacteriophages as nanomedicines. J. Nanotechnol. 2012, 247427 (2012).

    Article 
    CAS 

    Google Scholar 

  • 137.

    Blazanovic, K. et al. Structure-based redesign of lysostaphin yields potent antistaphylococcal enzymes that evade immune cell surveillance. Mol. Ther. Methods Clin. Dev. 2, 15021 (2015).

    Article 
    CAS 

    Google Scholar 

  • 138.

    Zhao, H. et al. Depletion of T cell epitopes in lysostaphin mitigates anti-drug antibody response and enhances antibacterial efficacy in vivo. Chem. Biol. 22, 629–639 (2015).

    CAS 
    Article 

    Google Scholar 

  • 139.

    Alcantar, N. A., Aydil, E. S. & Israelachvili, J. N. Polyethylene glycol–coated biocompatible surfaces. J. Biomed. Mater. Res. 51, 343–351 (2000).

    CAS 
    Article 

    Google Scholar 

  • 140.

    Zhang, P., Sun, F., Liu, S. & Jiang, S. Anti-PEG antibodies in the clinic: Current issues and beyond PEGylation. J. Control. Rel. 244, 184–193 (2016).

    CAS 
    Article 

    Google Scholar 

  • 141.

    Saifer, M. G. P., Williams, L. D., Sobczyk, M. A., Michaels, S. J. & Sherman, M. R. Selectivity of binding of PEGs and PEG-like oligomers to anti-PEG antibodies induced by methoxyPEG-proteins. Mol. Immunol. 57, 236–246 (2014).

    CAS 
    Article 

    Google Scholar 

  • 142.

    Qi, Y. et al. A brush-polymer/exendin-4 conjugate reduces blood glucose levels for up to five days and eliminates poly(ethylene glycol) antigenicity. Nat. Biomed. Eng. 1, 0002 (2016).

    Article 
    CAS 

    Google Scholar 

  • 143.

    Mancuso, F., Shi, J. & Malik, D. J. High throughput manufacturing of bacteriophages using continuous stirred tank bioreactors connected in series to ensure optimum host bacteria physiology for phage production. Viruses 10, 537 (2018).

    Article 
    CAS 

    Google Scholar 

  • 144.

    Wibowo, D. & Zhao, C.-X. Recent achievements and perspectives for large-scale recombinant production of antimicrobial peptides. Appl. Microbiol. Biotechnol. 103, 659–671 (2019).

    CAS 
    Article 

    Google Scholar 

  • 145.

    Nour El-Din, H. T. et al. A rapid lysostaphin production approach and a convenient novel lysostaphin loaded nano-emulgel; as a sustainable low-cost methicillin-resistant Staphylococcus aureus combating platform. Biomolecules 10, 435 (2020).

    Article 
    CAS 

    Google Scholar 

  • 146.

    Szweda, P., Gorczyca, G., Filipkowski, P., Zalewska, M. & Milewski, S. Efficient production of Staphylococcus simulans lysostaphin in a benchtop bioreactor by recombinant Escherichia coli. Prep. Biochem. Biotechnol. 44, 370–381 (2014).

    CAS 
    Article 

    Google Scholar 

  • 147.

    Mierau, I. et al. Industrial-scale production and purification of a heterologous protein in Lactococcus lactis using the nisin-controlled gene expression system NICE: The case of lysostaphin. Microb. Cell Fact. 4, 15 (2005).

    Article 
    CAS 

    Google Scholar 

  • 148.

    Hu, C. et al. Industrialization of lipid nanoparticles: From laboratory-scale to large-scale production line. Eur. J. Pharm. Biopharm. 109, 206–213 (2016).

    CAS 
    Article 

    Google Scholar 

  • 149.

    Fowler, V. G. Jr et al. Exebacase for patients with Staphylococcus aureus bloodstream infection and endocarditis. J. Clin. Invest. 130, 3750–3760 (2020).

    CAS 
    Article 

    Google Scholar 

  • 150.

    Schuch, R., Nowinski, R. C., Wittekind, M., Lee, H. & Schneider, B. Bacteriophage lysin and antibiotic combinations against gram positive bacteria. US Patent 9889181 (2018).

  • 151.

    Stefan, M. New antimicrobial agents. European patent application EP2702070EP2702070 (2014).

  • 152.

    Czaplewski, L. et al. Alternatives to antibiotics — a pipeline portfolio review. Lancet Infect. Dis. 16, 239–251 (2016).

    CAS 
    Article 

    Google Scholar 

  • 153.

    Ting, D. S. J., Beuerman, R. W., Dua, H. S., Lakshminarayanan, R. & Mohammed, I. Strategies in translating the therapeutic potentials of host defense peptides. Front. Immunol. 11, 983 (2020).

    CAS 
    Article 

    Google Scholar 

  • 154.

    Abdelkader, K., Gerstmans, H., Saafan, A., Dishisha, T. & Briers, Y. The preclinical and clinical progress of bacteriophages and their lytic enzymes: the parts are easier than the whole. Viruses 11, 96 (2019).

    CAS 
    Article 

    Google Scholar 

  • 155.

    Fridman, O., Goldberg, A., Ronin, I., Shoresh, N. & Balaban, N. Q. Optimization of lag time underlies antibiotic tolerance in evolved bacterial populations. Nature 513, 418–421 (2014).

    CAS 
    Article 

    Google Scholar 

  • 156.

    DiGiandomenico, A. et al. A multifunctional bispecific antibody protects against Pseudomonas aeruginosa. Sci. Transl Med. 6, 262ra155 (2014).

    Article 
    CAS 

    Google Scholar 

  • 157.

    Secher, T. et al. The anti-Pseudomonas aeruginosa antibody Panobacumab is efficacious on acute pneumonia in neutropenic mice and has additive effects with meropenem. PLoS ONE 8, e73396 (2013).

    CAS 
    Article 

    Google Scholar 

  • 158.

    Palmu, A. A. et al. Effect of pneumococcal Haemophilus influenzae protein D conjugate vaccine (PHiD-CV10) on outpatient antimicrobial purchases: a double-blind, cluster randomised phase 3–4 trial. Lancet Infect. Dis. 14, 205–212 (2014).

    CAS 
    Article 

    Google Scholar 

  • 159.

    Nuccitelli, A. et al. Structure-based approach to rationally design a chimeric protein for an effective vaccine against Group B Streptococcus infections. Proc. Natl Acad. Sci. USA 108, 10278–10283 (2011).

    CAS 
    Article 

    Google Scholar 

  • 160.

    Hancock, R. E., Nijnik, A. & Philpott, D. J. Modulating immunity as a therapy for bacterial infections. Nat. Rev. Microbiol. 10, 243–254 (2012).

    CAS 
    Article 

    Google Scholar 

  • 161.

    Scott, M. G. et al. An anti-infective peptide that selectively modulates the innate immune response. Nat. Biotechnol. 25, 465–472 (2007).

    CAS 
    Article 

    Google Scholar 

  • 162.

    de la Fuente-Núñez, C., Reffuveille, F., Haney, E. F., Straus, S. K. & Hancock, R. E. Broad-spectrum anti-biofilm peptide that targets a cellular stress response. PLoS Pathog. 10, e1004152 (2014).

    Article 
    CAS 

    Google Scholar 

  • 163.

    Krausgruber, T. et al. Structural cells are key regulators of organ-specific immune responses. Nature 583, 296–302 (2020).

    CAS 
    Article 

    Google Scholar 

  • 164.

    Todd, E. M., Ramani, R., Szasz, T. P. & Morley, S. C. Inhaled GM-CSF in neonatal mice provides durable protection against bacterial pneumonia. Sci. Adv. 5, eaax3387 (2019).

    CAS 
    Article 

    Google Scholar 

  • 165.

    Zhang, Z., Nong, J. & Zhong, Y. Antibacterial, anti-inflammatory and neuroprotective layer-by-layer coatings for neural implants. J. Neural Eng. 12, 046015 (2015).

    Article 

    Google Scholar 

  • 166.

    Bouras, M., Asehnoune, K. & Roquilly, A. Contribution of dendritic cell responses to sepsis-induced immunosuppression and to susceptibility to secondary pneumonia. Front. Immunol. 9, 2590 (2018).

    Article 
    CAS 

    Google Scholar 

  • 167.

    Hotchkiss, R. S., Monneret, G. & Payen, D. Sepsis-induced immunosuppression: from cellular dysfunctions to immunotherapy. Nat. Rev. Immunol. 13, 862–874 (2013).

    CAS 
    Article 

    Google Scholar 

  • 168.

    Roquilly, A. et al. Alveolar macrophages are epigenetically altered after inflammation, leading to long-term lung immunoparalysis. Nat. Immunol. 21, 636–648 (2020).

    CAS 
    Article 

    Google Scholar 

  • 169.

    Lee, J. H., Jeong, S. H., Cha, S.-S. & Lee, S. H. A lack of drugs for antibiotic-resistant Gram-negative bacteria. Nat. Rev. Drug Discov. 6, 938–938 (2007).

    Article 
    CAS 

    Google Scholar 

  • 170.

    York, A. New drugs for the antibacterial pipeline? Nat. Rev. Microbiol. 18, 61–61 (2020).

    CAS 
    Article 

    Google Scholar 

  • 171.

    Jault, P. et al. Efficacy and tolerability of a cocktail of bacteriophages to treat burn wounds infected by Pseudomonas aeruginosa (PhagoBurn): a randomised, controlled, double-blind phase 1/2 trial. Lancet Infect. Dis. 19, 35–45 (2019).

    Article 

    Google Scholar 

  • 172.

    Leitner, L. et al. Bacteriophages for treating urinary tract infections in patients undergoing transurethral resection of the prostate: a randomized, placebo-controlled, double-blind clinical trial. BMC Urol. 17, 90 (2017).

    Article 
    CAS 

    Google Scholar 

  • 173.

    Leitner, L. et al. Intravesical bacteriophages for treating urinary tract infections in patients undergoing transurethral resection of the prostate: a randomised, placebo-controlled, double-blind clinical trial. Lancet Infect. Dis. 21, 427–436 (2020).

    Article 

    Google Scholar 

  • 174.

    Jun, S. Y. et al. Pharmacokinetics and tolerance of the phage endolysin-based candidate drug SAL200 after a single intravenous administration among healthy volunteers. Antimicrob. Agents Chemother. 61, e02629-16 (2017).

    Article 

    Google Scholar 

  • 175.

    Raqib, R. et al. Improved outcome in shigellosis associated with butyrate induction of an endogenous peptide antibiotic. Proc. Natl Acad. Sci. USA 103, 9178–9183 (2006).

    CAS 
    Article 

    Google Scholar 

  • 176.

    Raqib, R. et al. Efficacy of sodium butyrate adjunct therapy in shigellosis: a randomized, double-blind, placebo-controlled clinical trial. BMC Infect. Dis. 12, 111 (2012).

    CAS 
    Article 

    Google Scholar 

  • 177.

    Rekha, R. S. et al. Immune responses in the treatment of drug-sensitive pulmonary tuberculosis with phenylbutyrate and vitamin D3 as host directed therapy. BMC Infect. Dis. 18, 303 (2018).

    Article 
    CAS 

    Google Scholar 

  • 178.

    Melo Ld, V. P. et al. Development of a phage cocktail to control proteus mirabilis catheter-associated urinary tract infections. Front. Microbiol. 7, 1024 (2016).

    Google Scholar 

  • 179.

    Meyer, A., Greene, M., Kimmelshue, C. & Cademartiri, R. Stabilization of T4 bacteriophage at acidic and basic pH by adsorption on paper. Colloids Surf. B Biointerfaces 160, 169–176 (2017).

    CAS 
    Article 

    Google Scholar 

  • 180.

    Fulgione, A. et al. Biomimetic hydroxyapatite nanocrystals are an active carrier for Salmonella bacteriophages. Int. J. Nanomed. 14, 2219–2232 (2019).

    CAS 
    Article 

    Google Scholar 

  • 181.

    Kłodzińska, S. N. et al. Hyaluronic acid-based nanogels improve in vivo compatibility of the anti-biofilm peptide DJK-5. Nanomedicine 20, 102022 (2019).

    Article 
    CAS 

    Google Scholar 

  • 182.

    Xue, Q. et al. Anti-infective biomaterials with surface-decorated tachyplesin I. Biomaterials 178, 351–362 (2018).

    CAS 
    Article 

    Google Scholar 

  • 183.

    Moosazadeh Moghaddam, M. et al. Comparison of the antibacterial effects of a short cationic peptide and 1% silver bioactive glass against extensively drug-resistant bacteria, Pseudomonas aeruginosa and Acinetobacter baumannii, isolated from burn patients. Amino Acids 50, 1617–1628 (2018).

    CAS 
    Article 

    Google Scholar 

  • 184.

    Chen, H. et al. Versatile antimicrobial peptide-based ZnO quantum dots for in vivo bacteria diagnosis and treatment with high specificity. Biomaterials 53, 532–544 (2015).

    CAS 
    Article 

    Google Scholar 

  • 185.

    Zhang, Y. et al. Antibacterial and biocompatible cross-linked waterborne polyurethanes containing gemini quaternary ammonium salts. Biomacromolecules 19, 279–287 (2018).

    Article 
    CAS 

    Google Scholar 

  • 186.

    Chen, Y. F. et al. Star-shaped polypeptides exhibit potent antibacterial activities. Nanoscale 11, 11696–11708 (2019).

    CAS 
    Article 

    Google Scholar 

  • 187.

    Hesaraki, S., Karimi, M. & Nezafati, N. The synergistic effects of SrF2 nanoparticles, YSZ nanoparticles, and poly-ε-l-lysin on physicomechanical, ion release, and antibacterial-cellular behavior of the flowable dental composites. Mater. Sci. Eng. C 109, 110592 (2020).

    CAS 
    Article 

    Google Scholar 

  • 188.

    Liu, Y. et al. Immunomimetic designer cells protect mice from MRSA infection. Cell 174, 259–270.e11 (2018).

    CAS 
    Article 

    Google Scholar 

  • 189.

    Zhu, C. et al. A hydrogel-based localized release of colistin for antimicrobial treatment of burn wound infection. Macromol. Biosci. 17, 1600320 (2017).

    Article 
    CAS 

    Google Scholar 

  • 190.

    Kuijpers, A. J. et al. In vitro and in vivo evaluation of gelatin-chondroitin sulphate hydrogels for controlled release of antibacterial proteins. Biomaterials 21, 1763–1772 (2000).

    CAS 
    Article 

    Google Scholar 

  • 191.

    Vipra, A. A. et al. Antistaphylococcal activity of bacteriophage derived chimeric protein P128. BMC Microbiol. 12, 41 (2012).

    CAS 
    Article 

    Google Scholar 

  • 192.

    Pangule, R. C. et al. Antistaphylococcal nanocomposite films based on enzyme-nanotube conjugates. ACS Nano 4, 3993–4000 (2010).

    CAS 
    Article 

    Google Scholar 

  • 193.

    Flynn, J., Durack, E., Collins, M. N. & Hudson, S. P. Tuning the strength and swelling of an injectable polysaccharide hydrogel and the subsequent release of a broad spectrum bacteriocin, nisin A. J. Mater. Chem. B 8, 4029–4038 (2020).

    CAS 
    Article 

    Google Scholar 

  • 194.

    Blair, J. M. A., Webber, M. A., Baylay, A. J., Ogbolu, D. O. & Piddock, L. J. V. Molecular mechanisms of antibiotic resistance. Nat. Rev. Microbiol. 13, 42–51 (2015).

    CAS 
    Article 

    Google Scholar 

  • Source link