Ashbaugh, D. G., Bigelow, D. B., Petty, T. L. & Levine, B. E. Acute respiratory distress in adults. Lancet 2, 319–323. https://doi.org/10.1016/s0140-6736(67)90168-7 (1967).
Google Scholar
Malhotra, A. Low-tidal-volume ventilation in the acute respiratory distress syndrome. N. Engl. J. Med. 357, 1113–1120. https://doi.org/10.1056/NEJMct074213 (2007).
Google Scholar
Papazian, L. et al. Neuromuscular blockers in early acute respiratory distress syndrome. N. Engl. J. Med. 363, 1107–1116. https://doi.org/10.1056/NEJMoa1005372 (2010).
Google Scholar
Guerin, C. et al. Prone positioning in severe acute respiratory distress syndrome. N. Engl. J. Med. 368, 2159–2168. https://doi.org/10.1056/NEJMoa1214103 (2013).
Google Scholar
Phua, J. et al. Has mortality from acute respiratory distress syndrome decreased over time? A systematic review. Am. J. Respir. Crit. Care Med. 179, 220–227. https://doi.org/10.1164/rccm.200805-722OC (2009).
Google Scholar
Jeon, K. Pharmacotherapy for acute respiratory distress syndrome: Limited success to date. Tuberc. Respir. Dis. (Seoul) 80, 311–312. https://doi.org/10.4046/trd.2017.80.3.311 (2017).
Google Scholar
Mazzeffi, M. Pharmacotherapy in acute respiratory distress syndrome-the long and winding road. J. Thorac. Dis. 8, 2337–2339. https://doi.org/10.21037/jtd.2016.08.35 (2016).
Google Scholar
Peritore, A. F. et al. Management of acute lung injury: Palmitoylethanolamide as a new approach. Int. J. Mol. Sci. https://doi.org/10.3390/ijms22115533 (2021).
Google Scholar
Bosma, K. J., Taneja, R. & Lewis, J. F. Pharmacotherapy for prevention and treatment of acute respiratory distress syndrome: Current and experimental approaches. Drugs 70, 1255–1282. https://doi.org/10.2165/10898570-000000000-00000 (2010).
Google Scholar
Sies, H. Oxidative stress: A concept in redox biology and medicine. Redox Biol. 4, 180–183. https://doi.org/10.1016/j.redox.2015.01.002 (2015).
Google Scholar
Kellner, M. et al. ROS signaling in the pathogenesis of acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). Adv. Exp. Med. Biol. 967, 105–137. https://doi.org/10.1007/978-3-319-63245-2_8 (2017).
Google Scholar
Roberts, A. M. Central role of oxidative stress and its signaling pathways in causing and preventing acute lung injury. Crit. Care Med. 39, 2776–2777. https://doi.org/10.1097/CCM.0b013e31822b3a00 (2011).
Google Scholar
Moradi, M. et al. The role of glutathione-S-transferase polymorphisms on clinical outcome of ALI/ARDS patient treated with N-acetylcysteine. Respir. Med. 103, 434–441. https://doi.org/10.1016/j.rmed.2008.09.013 (2009).
Google Scholar
Szakmany, T., Hauser, B. & Radermacher, P. N-acetylcysteine for sepsis and systemic inflammatory response in adults. Cochrane Database Syst. Rev. https://doi.org/10.1002/14651858.CD006616.pub2 (2012).
Google Scholar
Cazzola, M., Calzetta, L., Facciolo, F., Rogliani, P. & Matera, M. G. Pharmacological investigation on the anti-oxidant and anti-inflammatory activity of N-acetylcysteine in an ex vivo model of COPD exacerbation. Respir. Res. 18, 26. https://doi.org/10.1186/s12931-016-0500-y (2017).
Google Scholar
Rendell, R. et al. Assessment of N-acetylcysteine as a therapy for phosgene-induced acute lung injury. Toxicol. Lett. 290, 145–152. https://doi.org/10.1016/j.toxlet.2018.03.025 (2018).
Google Scholar
Ritter, C. et al. Effects of N-acetylcysteine plus deferoxamine in lipopolysaccharide-induced acute lung injury in the rat. Crit. Care Med. 34, 471–477. https://doi.org/10.1097/01.ccm.0000199069.19193.89 (2006).
Google Scholar
Domenighetti, G., Suter, P. M., Schaller, M. D., Ritz, R. & Perret, C. Treatment with N-acetylcysteine during acute respiratory distress syndrome: A randomized, double-blind, placebo-controlled clinical study. J. Crit. Care 12, 177–182. https://doi.org/10.1016/s0883-9441(97)90029-0 (1997).
Google Scholar
Jepsen, S., Herlevsen, P., Knudsen, P., Bud, M. I. & Klausen, N. O. Antioxidant treatment with N-acetylcysteine during adult respiratory distress syndrome: A prospective, randomized, placebo-controlled study. Crit. Care Med. 20, 918–923. https://doi.org/10.1097/00003246-199207000-00004 (1992).
Google Scholar
Suter, P. M. et al. N-acetylcysteine enhances recovery from acute lung injury in man. A randomized, double-blind, placebo-controlled clinical study. Chest 105, 190–194. https://doi.org/10.1378/chest.105.1.190 (1994).
Google Scholar
Olsson, B., Johansson, M., Gabrielsson, J. & Bolme, P. Pharmacokinetics and bioavailability of reduced and oxidized N-acetylcysteine. Eur. J. Clin. Pharmacol. 34, 77–82. https://doi.org/10.1007/BF01061422 (1988).
Google Scholar
Suzuki, K. Anti-oxidants for therapeutic use: Why are only a few drugs in clinical use?. Adv. Drug Del. Rev. 61, 287–289. https://doi.org/10.1016/j.addr.2009.03.002 (2009).
Google Scholar
Blanco, E., Shen, H. & Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 33, 941–951. https://doi.org/10.1038/nbt.3330 (2015).
Google Scholar
Smith, S. A., Selby, L. I., Johnston, A. P. R. & Such, G. K. The endosomal escape of nanoparticles: Toward more efficient cellular delivery. Bioconjug. Chem. 30, 263–272. https://doi.org/10.1021/acs.bioconjchem.8b00732 (2019).
Google Scholar
Poon, W., Kingston, B. R., Ouyang, B., Ngo, W. & Chan, W. C. W. A framework for designing delivery systems. Nat. Nanotechnol. 15, 819–829. https://doi.org/10.1038/s41565-020-0759-5 (2020).
Google Scholar
Matute-Bello, G. et al. An official American Thoracic Society workshop report: Features and measurements of experimental acute lung injury in animals. Am. J. Respir. Cell. Mol. Biol. 44, 725–738. https://doi.org/10.1165/rcmb.2009-0210ST (2011).
Google Scholar
Moser, M. et al. Ellman’s and aldrithiol assay as versatile and complementary tools for the quantification of thiol groups and ligands on nanomaterials. Anal. Chem. 88, 8624–8631. https://doi.org/10.1021/acs.analchem.6b01798 (2016).
Google Scholar
Sies, H. Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: Oxidative eustress. Redox Biol. 11, 613–619. https://doi.org/10.1016/j.redox.2016.12.035 (2017).
Google Scholar
Nova, Z., Skovierova, H. & Calkovska, A. Alveolar-capillary membrane-related pulmonary cells as a target in endotoxin-induced acute lung injury. Int. J. Mol. Sci. https://doi.org/10.3390/ijms20040831 (2019).
Google Scholar
Matthay, M. A. et al. Acute respiratory distress syndrome. Nat. Rev. Dis. Primers 5, 18. https://doi.org/10.1038/s41572-019-0069-0 (2019).
Google Scholar
Huppert, L. A., Matthay, M. A. & Ware, L. B. Pathogenesis of acute respiratory distress syndrome. Semin. Respir. Crit. Care Med. 40, 31–39. https://doi.org/10.1055/s-0039-1683996 (2019).
Google Scholar
Kim, S. K. et al. Protective effects of diphenyleneiodonium, an NADPH oxidase inhibitor, on lipopolysaccharide-induced acute lung injury. Clin. Exp. Pharmacol. Physiol. 46, 153–162. https://doi.org/10.1111/1440-1681.13050 (2019).
Google Scholar
Kosutova, P. et al. Reduction of lung inflammation, oxidative stress and apoptosis by the PDE4 inhibitor roflumilast in experimental model of acute lung injury. Physiol. Res. 67, S645–S654. https://doi.org/10.33549/physiolres.934047 (2018).
Google Scholar
Kopincova, J. et al. Recombinant human superoxide dismutase and N-acetylcysteine addition to exogenous surfactant in the treatment of meconium aspiration syndrome. Molecules https://doi.org/10.3390/molecules24050905 (2019).
Google Scholar
Mokra, D. et al. N-acetylcysteine effectively diminished meconium-induced oxidative stress in adult rabbits. J. Physiol. Pharmacol. 66, 101–110 (2015).
Google Scholar
Yates, C. R. et al. Time-variant increase in methylprednisolone clearance in patients with acute respiratory distress syndrome: A population pharmacokinetic study. J. Clin. Pharmacol. 41, 415–424. https://doi.org/10.1177/00912700122010276 (2001).
Google Scholar
Zagli, G. et al. Altered pharmacology in the Intensive Care Unit patient. Fundam. Clin. Pharmacol. 22, 493–501. https://doi.org/10.1111/j.1472-8206.2008.00623.x (2008).
Google Scholar
Banerjee, R. Nanotechnology in drug delivery: Present status and a glimpse into the future. Ther. Deliv. 9, 231–232. https://doi.org/10.4155/tde-2018-0014 (2018).
Google Scholar
Patra, J. K. et al. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnol. 16, 71. https://doi.org/10.1186/s12951-018-0392-8 (2018).
Google Scholar
Wuyts, W. A., Vanaudenaerde, B. M., Dupont, L. J., Demedts, M. G. & Verleden, G. M. N-acetylcysteine reduces chemokine release via inhibition of p38 MAPK in human airway smooth muscle cells. Eur. Respir. J. 22, 43–49. https://doi.org/10.1183/09031936.03.00064803 (2003).
Google Scholar
Hashimoto, S., Gon, Y., Matsumoto, K., Takeshita, I. & Horie, T. N-acetylcysteine attenuates TNF-alpha-induced p38 MAP kinase activation and p38 MAP kinase-mediated IL-8 production by human pulmonary vascular endothelial cells. Br. J. Pharmacol. 132, 270–276. https://doi.org/10.1038/sj.bjp.0703787 (2001).
Google Scholar
Lim, S. B., Rubinstein, I., Sadikot, R. T., Artwohl, J. E. & Önyüksel, H. A novel peptide nanomedicine against acute lung injury: GLP-1 in phospholipid micelles. Pharm. Res. 28, 662–672. https://doi.org/10.1007/s11095-010-0322-4 (2011).
Google Scholar
Yuan, Z. et al. TREM-1-accentuated lung injury via miR-155 is inhibited by LP17 nanomedicine. Am. J. Physiol. Lung Cell Mol. Physiol. 310, L426-438. https://doi.org/10.1152/ajplung.00195.2015 (2016).
Google Scholar
Xiong, Y. et al. Peptide-gold nanoparticle hybrids as promising anti-inflammatory nanotherapeutics for acute lung injury: In vivo efficacy biodistribution and clearance. Adv. Healthc. Mater. 7, e1800510 (2018).
Google Scholar
Gao, W. et al. Size-dependent anti-inflammatory activity of a peptide-gold nanoparticle hybrid in vitro and in a mouse model of acute lung injury. Acta Biomater. 85, 203–217. https://doi.org/10.1016/j.actbio.2018.12.046 (2019).
Google Scholar
Yu, H. P. et al. Oleic acid-based nanosystems for mitigating acute respiratory distress syndrome in mice through neutrophil suppression: How the particulate size affects therapeutic efficiency. J. Nanobiotechnol. 18, 25. https://doi.org/10.1186/s12951-020-0583-y (2020).
Google Scholar
Jafari, S. et al. Mesoporous silica nanoparticles for therapeutic/diagnostic applications. Biomed. Pharmacother. 109, 1100–1111. https://doi.org/10.1016/j.biopha.2018.10.167 (2019).
Google Scholar
Yu, T., Hubbard, D., Ray, A. & Ghandehari, H. In vivo biodistribution and pharmacokinetics of silica nanoparticles as a function of geometry, porosity and surface characteristics. J. Control Release 163, 46–54. https://doi.org/10.1016/j.jconrel.2012.05.046 (2012).
Google Scholar
Paris, J. L. & Vallet-Regi, M. Mesoporous silica nanoparticles for Co-delivery of drugs and nucleic acids in oncology: A review. Pharmaceutics https://doi.org/10.3390/pharmaceutics12060526 (2020).
Google Scholar
Iturrioz-Rodriguez, N., Correa-Duarte, M. A. & Fanarraga, M. L. Controlled drug delivery systems for cancer based on mesoporous silica nanoparticles. Int. J. Nanomed. 14, 3389–3401. https://doi.org/10.2147/IJN.S198848 (2019).
Google Scholar
Lu, J., Liong, M., Li, Z., Zink, J. I. & Tamanoi, F. Biocompatibility, biodistribution, and drug-delivery efficiency of mesoporous silica nanoparticles for cancer therapy in animals. Small 6, 1794–1805. https://doi.org/10.1002/smll.201000538 (2010).
Google Scholar
Huang, X. et al. The shape effect of mesoporous silica nanoparticles on biodistribution, clearance, and biocompatibility in vivo. ACS Nano 5, 5390–5399. https://doi.org/10.1021/nn200365a (2011).
Google Scholar
Younes, M. et al. Re-evaluation of silicon dioxide (E 551) as a food additive. EFSA J. 16, 5088. https://doi.org/10.2903/j.efsa.2018.5088 (2018).
Google Scholar
Zhou, Y. et al. Mesoporous silica nanoparticles for drug and gene delivery. Acta Pharm. Sin. B 8, 165–177. https://doi.org/10.1016/j.apsb.2018.01.007 (2018).
Google Scholar
Phillips, E. et al. Clinical translation of an ultrasmall inorganic optical-PET imaging nanoparticle probe. Sci. Transl. Med. 6, 260ra149. https://doi.org/10.1126/scitranslmed.3009524 (2014).
Google Scholar

