Preloader

Bio-strengthening of cementitious composites from incinerated sugarcane filter cake by a calcifying bacterium Lysinibacillus sp. WH

  • Krishnapriya, S. & Venkatesh Babu, D. L. Isolation and identification of bacteria to improve the strength of concrete. Microbiol. Res. 174, 48–55 (2015).

    CAS 
    Article 

    Google Scholar 

  • Achal, V. & Mukherjee, A. A review of microbial precipitation for sustainable construction. Constr. Build. Mater. 93, 1224–1235 (2015).

    Article 

    Google Scholar 

  • Ariyanti, D. & Handayani, N. A. An overview of biocement production from microalgae. Int. J. Sci. Eng. 2, 31–33 (2011).

    Google Scholar 

  • Miller, S. A., Horvath, A. & Monteiro, P. J. M. Impacts of booming concrete production on water resources worldwide. Nat. Sustain. 1, 69–76 (2018).

    Article 

    Google Scholar 

  • Hosseini, M., Shao, Y. & Whalen, J. K. Biocement production from silicon-rich plant residues: Perspectives and future potential in Canada. Biosyst. Eng. 110, 351–362 (2011).

    Article 

    Google Scholar 

  • Bheel, N. Rice husk ash and fly ash effects on the mechanical properties of concrete. (2020).

  • Bheel, N. et al. Mechanical performance of concrete incorporating wheat straw ash as partial replacement of cement. J. Build. Pathol. Rehab. 7, 1–7 (2021).

    Google Scholar 

  • Aliyu, S., Mohammed, A., Matawal, D. S. & Duna, S. Response surfaces for compressive strength of high performance concrete with corn cob ash. 2, 1–22 (2019).

  • da Gloria, M. Y. R. & Toledo Filho, R. D. Innovative sandwich panels made of wood bio-concrete and sisal fiber reinforced cement composites. Constr. Build. Materials. 272, (2021).

  • Jahanzaib, M., Aslam, M. & Ahmad, S. Utilization of sugarcane bagasse ash as cement replacement for the production of sustainable concrete – A review. Constr. Build. Mater. 270, 121371 (2021).

    Article 

    Google Scholar 

  • Sua-Iam, G. & Makul, N. Effect of incinerated sugarcane filter cake on the properties of self-compacting concrete. Constr. Build. Mater. 130, 32–40 (2017).

    Article 

    Google Scholar 

  • Khumla, N. et al. Sugarcane breeding, germplasm development and supporting genetics research in Thailand. Sugar Tech. (2021).

  • Workman, D. Sugar Exports by Country https://www.worldstopexports.com/sugar-exports-country/ (2020)

  • Chauhan, M. K., Varun, C. & Kumar, S. Life cycle assessment of sugar industry: A review. Renew. Sustain. Energy Rev. 15, 3445–3453 (2011).

    Article 

    Google Scholar 

  • Gupta, N., Tripathi, S. & Balomajumder, C. Characterization of pressmud: A sugar industry waste. Fuel 90, 389–394 (2011).

    Article 

    Google Scholar 

  • Li, H., Xu, W., Yang, X. & Wu, J. Preparation of Portland cement with sugar filter mud as lime-based raw material. J. Clean. Prod. 66, 107–112 (2014).

    CAS 
    Article 

    Google Scholar 

  • Makul, N. & Sua-Iam, G. Characteristics and utilization of sugarcane filter cake waste in the production of lightweight foamed concrete. J. Clean. Prod. 126, 118–133 (2016).

    Article 

    Google Scholar 

  • Akindahunsi, A. A., Adeyemo, S. M. & Adeoye, A. The use of bacteria (Bacillus subtilis) in improving the mechanical properties of concrete. J. Build. Pathol. Rehab. 6, (2021).

  • Ekprasert, J., Fongkaew, I., Chainakun, P., Kamngam, R. & Boonsuan, W. Investigating mechanical properties and biocement application of CaCO3 precipitated by a newly-isolated Lysinibacillus sp. WH using artificial neural networks. Sci. Rep. 10, 1–13 (2020).

    Article 

    Google Scholar 

  • Joshi, S., Goyal, S., Mukherjee, A. & Reddy, M. S. Microbial healing of cracks in concrete: A review. J. Ind. Microbiol. Biotechnol. 44, 1511–1525 (2017).

    CAS 
    Article 

    Google Scholar 

  • Schwantes-Cezario, N. et al. Effects of Bacillus subtilis biocementation on the mechanical properties of mortars. Revista IBRACON de Estruturas e Mater. 12, 31–38 (2019).

    Article 

    Google Scholar 

  • Jonkers, H. M. & Schlangen, E. Crack repair by concrete-immobilized bacteria. In: Proceedings of The Firs International Conference on Self Healing Materials. Noordwijk aan Zee, The Netherlands. (2007).

  • van Tittelboom, K., de Belie, N., de Muynck, W. & Verstraete, W. Use of bacteria to repair cracks in concrete. Cem. Concr. Res. 40, 157–166 (2010).

    Article 

    Google Scholar 

  • Ekprasert, J. et al. Kinetic model of a newly‐isolated Lysinibacillus sp. strain YL and elastic properties of its biogenic CaCO 3 towards biocement application. Biotechnol. J.. (2021).

  • Farrugia, C., Borg, R. P., Ferrara, L. & Buhagiar, J. The application of lysinibacillus sphaericus for surface treatment and crack healing in mortar. 5, 1–10 (2019).

  • Lee, Y. S., Kim, H. J. & Park, W. Non-ureolytic calcium carbonate precipitation by Lysinibacillus sp. YS11 isolated from the rhizosphere of Miscanthus sacchariflorus. J. Microbiol. 55, 440–447 (2017).

    CAS 
    Article 

    Google Scholar 

  • Mutitu, D. K. et al. Influence of Lysinibacillus sphaericus on compressive strength and water sorptivity in microbial cement mortar. Heliyon. 5, e02881 (2019).

    Article 

    Google Scholar 

  • Vashisht, R., Attri, S., Sharma, D., Shukla, A. & Goel, G. Monitoring biocalcification potential of Lysinibacillus sp. isolated from alluvial soils for improved compressive strength of concrete. Microbiol. Res. 207, 226–231 (2018).

    CAS 
    Article 

    Google Scholar 

  • Castro-Alonso, M. J. et al. Microbially induced calcium carbonate precipitation (MICP) and its potential in bioconcrete: Microbiological and molecular concepts. Front. Mater. 6, 1–15 (2019).

    Article 

    Google Scholar 

  • Boquet, E., Boronat, A. & Ramos-Cormenzana, A. Production of calcite (Calcium Carbonate) crystals by soil bacteria is a general phenomenon. Nature 246, 527–529 (1973).

    ADS 
    Article 

    Google Scholar 

  • ASTM C642–13. Standard test method for density, absorption and voids in hardened concrete, ASTM International. (2013).

  • ASTM C109. Standard test method of compressive strength of hydraulic cement mortars (using 2-in. or [50 mm] cube specimens), Annual Book of ASTM Standard 04.01. (2002).

  • da Silva, V. L. et al. Application of SDS surfactant microemulsion for removal of filter cake of oil-based drilling fluid: Influence of cosurfactant. J. Petrol. Explor. Prod. Technol. 10, 2845–2856 (2020).

    Article 

    Google Scholar 

  • Pavlík, Z. et al. DSC and TG analysis of a blended binder based on waste ceramic powder and portland cement. Int. J. Thermophys. 37, 1–14 (2016).

    Article 

    Google Scholar 

  • Chindaprasirt, P. et al. Effect of calcium-rich compounds on setting time and strength development of alkali-activated fly ash cured at ambient temperature. Case Stud. Constr. Mater. 9, (2018).

  • Mawardi, M. et al. The fabrication of portland composite cement based on pozzolan napa soil. Materials. 14, (2021).

  • Yadav, R. L. & Solomon, S. Potential of developing sugarcane by-product based industries in India. Sugar Tech. 8, 104–111 (2006).

    Article 

    Google Scholar 

  • ASTM C618–15. Standard specification of coal fly ash and raw or calcined natural pozzolan for use in concrete, Annual Book of ASTM Standard 04.02. (2015).

  • Cui, L. & Fall, M. Mechanical and thermal properties of cemented tailings materials at early ages: Influence of initial temperature, curing stress and drainage conditions. Constr. Build. Mater. 125, 553–563 (2016).

    CAS 
    Article 

    Google Scholar 

  • Libos, I. L. S. & Cui, L. Effects of curing time, cement content, and saturation state on mode-I fracture toughness of cemented paste backfill. Eng. Fract. Mech. 235, (2020).

  • Fan, W. J., Wang, X. Y. & Park, K. B. Evaluation of the chemical and mechanical properties of hardening high-calcium fly ash blended concrete. Materials. 8, 5933–5952 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Papadakis, V. G. Effect of fly ash on Portland cement systems Part II. High-calcium fly ash. Cem. Concr. Res. 30(10), 1647–1654 (2000).

    CAS 
    Article 

    Google Scholar 

  • Kadri, E. H., Aggoun, S., de Schutter, G. & Ezziane, K. Combined effect of chemical nature and fineness of mineral powders on Portland cement hydration. Mater. Struct./Materiaux et Constr. 43, 665–673 (2010).

    CAS 
    Article 

    Google Scholar 

  • Courard, L., Michel, F., Perkowicz, S. & Garbacz, A. Effects of limestone fillers on surface free energy and electrical conductivity of the interstitial solution of cement mixes. Cem. Concr. Compos. 45, 111–116 (2014).

    CAS 
    Article 

    Google Scholar 

  • Aqel, M. & Panesar, D. K. Hydration kinetics and compressive strength of steam-cured cement pastes and mortars containing limestone filler. Constr. Build. Mater. 113, 359–368 (2016).

    CAS 
    Article 

    Google Scholar 

  • Matschei, T., Lothenbach, B. & Glasser, F. P. The role of calcium carbonate in cement hydration. Cem. Concr. Res. 37, 551–558 (2007).

    CAS 
    Article 

    Google Scholar 

  • Lothenbach, B., le Saout, G., Gallucci, E. & Scrivener, K. Influence of limestone on the hydration of Portland cements. Cem. Concr. Res. 38, 848–860 (2008).

    CAS 
    Article 

    Google Scholar 

  • Hargis, C. W., Telesca, A. & Monteiro, P. J. M. Calcium sulfoaluminate (Ye’elimite) hydration in the presence of gypsum, calcite, and vaterite. Cem. Concr. Res. 65, 15–20 (2014).

    CAS 
    Article 

    Google Scholar 

  • Wang, D., Xiong, C., Li, W. & Chang, J. Growth of calcium carbonate induced by accelerated carbonation of tricalcium silicate. ACS Sustain. Chem. Eng. 8, 14718–14731 (2020).

    CAS 
    Article 

    Google Scholar 

  • Qi, L., Liu, J. & Liu, Q. Compound effect of CaCO3 and CaSO4·2H2O on the strength of steel slag – cement binding materials. Mater. Res. 19, 269–275 (2016).

    CAS 
    Article 

    Google Scholar 

  • Tsimas, S. & Moutsatsou-Tsima, A. High-calcium fly ash as the fourth constituent in concrete: Problems, solutions and perspectives. Cement Concr. Compos. 27, 231–237 (2005).

    CAS 
    Article 

    Google Scholar 

  • Liu, J., Li, Q. & Xu, S. Influence of nanoparticles on fluidity and mechanical properties of cement mortar. Constr. Build. Mater. 101, 892–901 (2015).

    Article 

    Google Scholar 

  • Source link