Preloader

Base editing sensor libraries for high-throughput engineering and functional analysis of cancer-associated single nucleotide variants

  • Gorelick, A. N. et al. Phase and context shape the function of composite oncogenic mutations. Nature 582, 100–103 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hyman, D. M. et al. AKT inhibition in solid tumors with AKT1 mutations. J. Clin. Oncol. 35, 2251–2259 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vasan, N. et al. Double PIK3CA mutations in cis increase oncogenicity and sensitivity to PI3Kalpha inhibitors. Science 366, 714–723 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zafra, M. P. et al. An in vivo Kras allelic series reveals distinct phenotypes of common oncogenic variants. Cancer Discov. 10, 1654–1671 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Findlay, G. M. et al. Accurate classification of BRCA1 variants with saturation genome editing. Nature 562, 217–222 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vivanco, I. et al. Differential sensitivity of glioma- versus lung cancer-specific EGFR mutations to EGFR kinase inhibitors. Cancer Disco. 2, 458–471 (2012).

    CAS 

    Google Scholar 

  • Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A. & Liu, D. R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420–424 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gaudelli, N. M. et al. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature 551, 464–471 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Koblan, L. W. et al. Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction. Nat. Biotechnol. 36, 843–846 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zafra, M. P. et al. Optimized base editors enable efficient editing in cells, organoids and mice. Nat. Biotechnol. 36, 888–893 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kleinstiver, B. P. et al. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature 523, 481–485 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Katti, A. et al. GO: a functional reporter system to identify and enrich base editing activity. Nucleic Acids Res. 48, 2841–2852 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vakulskas, C. A. et al. A high-fidelity Cas9 mutant delivered as a ribonucleoprotein complex enables efficient gene editing in human hematopoietic stem and progenitor cells. Nat. Med. 24, 1216–1224 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nishimasu, H. et al. Engineered CRISPR-Cas9 nuclease with expanded targeting space. Science 361, 1259–1262 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hu, J. H. et al. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature 556, 57–63 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zehir, A. et al. Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. Nat. Med. 23, 703–713 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chakravarty, D. et al. A precision oncology knowledge base. JCO Precis. Oncol. 2017, PO.17.00011 (2017).

    Google Scholar 

  • Chakravarty, D. & Solit, D. B. Clinical cancer genomic profiling. Nat. Rev. Genet. 22, 483–501 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Dimitrova, N. et al. Stromal expression of miR-143/145 promotes neoangiogenesis in lung cancer development. Cancer Discov. 6, 188–201 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Lee, K. E. & Bar-Sagi, D. Oncogenic KRas suppresses inflammation-associated senescence of pancreatic ductal cells. Cancer Cell 18, 448–458 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Arbab, M. et al. Determinants of base editing outcomes from target library analysis and machine learning. Cell 182, 463–480.e430 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Alexandrov, L. B. et al. Signatures of mutational processes in human cancer. Nature 500, 415–421 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Komor, A. C. et al. Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C:G-to-T:A base editors with higher efficiency and product purity. Sci. Adv. 3, eaao4774 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Kastenhuber, E. R. & Lowe, S. W. Putting p53 in context. Cell 170, 1062–1078 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Muller, P. A. & Vousden, K. H. Mutant p53 in cancer: new functions and therapeutic opportunities. Cancer Cell 25, 304–317 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vassilev, L. T. et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303, 844–848 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • Li, W. et al. Quality control, modeling, and visualization of CRISPR screens with MAGeCK-VISPR. Genome Biol. 16, 281 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, W. et al. MAGeCK enables robust identification of essential genes from genome-scale CRISPR/Cas9 knockout screens. Genome Biol. 15, 554 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Morris, J. P. T. et al. α-Ketoglutarate links p53 to cell fate during tumour suppression. Nature 573, 595–599 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kanda, M. et al. Mutant TP53 in duodenal samples of pancreatic juice from patients with pancreatic cancer or high-grade dysplasia. Clin. Gastroenterol. Hepatol. 11, 719–730 e715 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Koblan, L. W. et al.Efficient C*G-to-G*C base editors developed using CRISPRi screens, target-library analysis, and machine learning. Nat. Biotechnol. 39, 1414–1425 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Shen, M. W. et al. Predictable and precise template-free CRISPR editing of pathogenic variants. Nature 563, 646–651 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Song, M. et al. Sequence-specific prediction of the efficiencies of adenine and cytosine base editors. Nat. Biotechnol. 38, 1037–1043 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Tycko, J. et al. Pairwise library screen systematically interrogates Staphylococcus aureus Cas9 specificity in human cells. Nat. Commun. 9, 2962 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Marquart, K. F. et al. Predicting base editing outcomes with an attention-based deep learning algorithm trained on high-throughput target library screens. Nat. Commun. 12, 5114 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, L. et al. Programmable C:G to G:C genome editing with CRISPR-Cas9-directed base excision repair proteins. Nat. Commun. 12, 1384 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kurt, I. C. et al. CRISPR C-to-G base editors for inducing targeted DNA transversions in human cells. Nat. Biotechnol. 39, 41–46 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Zhao, D. et al. Glycosylase base editors enable C-to-A and C-to-G base changes. Nat. Biotechnol. 39, 35–40 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Hyman, D. M., Taylor, B. S. & Baselga, J. Implementing genome-driven oncology. Cell 168, 584–599 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cuella-Martin, R. et al. Functional interrogation of DNA damage response variants with base editing screens. Cell 184, 1081–1097 e1019 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Hanna, R. E. et al. Massively parallel assessment of human variants with base editor screens. Cell 184, 1064–1080 e1020 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Xu, P. Genome-wide interrogation of gene functions through base editor screens empowered by barcoded sgRNAs. Nat. Biotechnol. 39, 1403–1413 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Adamson, B. et al. A multiplexed single-cell CRISPR screening platform enables systematic dissection of the unfolded protein response. Cell 167, 1867–1882.e1821 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Datlinger, P. et al. Pooled CRISPR screening with single-cell transcriptome readout. Nat. Methods 14, 297–301 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dixit, A. et al. Perturb-Seq: dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic screens. Cell 167, 1853–1866.e1817 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Anzalone, A. V. et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149–157 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kim, H. K. et al. Predicting the efficiency of prime editing guide RNAs in human cells. Nat. Biotechnol. 39, 198–206 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Clement, K. et al. CRISPResso2 provides accurate and rapid genome editing sequence analysis. Nat. Biotechnol. 37, 224–226 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Soto-Feliciano, Y. M. et al. A molecular switch between mammalian MLL complexes dictates response to Menin-MLL inhibition. Preprint at bioRxiv https://doi.org/10.1101/2021.10.22.465184 (2021).

  • Chen, B. et al. Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell 155, 1479–1491 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Doench, J. G. et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat. Biotechnol. 34, 184–191 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Source link