Preloader

Augmented lipid-nanoparticle-mediated in vivo genome editing in the lungs and spleen by disrupting Cas9 activity in the liver

  • Gillmore, J. D. et al. CRISPR–Cas9 in vivo gene editing for transthyretin amyloidosis. N. Engl. J. Med. 385, 493–502 (2021).

    CAS 

    Google Scholar 

  • Porteus, M. H. A new class of medicines through DNA editing. N. Engl. J. Med. 380, 947–959 (2019).

    CAS 

    Google Scholar 

  • Paunovska, K., Loughrey, D. & Dahlman, J. E. Drug delivery systems for RNA therapeutics. Nat. Rev. Genet. https://doi.org/10.1038/s41576-021-00439-4 (2022).

  • Lee, B. et al. Nanoparticle delivery of CRISPR into the brain rescues a mouse model of fragile X syndrome from exaggerated repetitive behaviours. Nat. Biomed. Eng. 2, 497–507 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lee, K. et al. Nanoparticle delivery of Cas9 ribonucleoprotein and donor DNA in vivo induces homology-directed DNA repair. Nat. Biomed. Eng. 1, 889–901 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gao, X. et al. Treatment of autosomal dominant hearing loss by in vivo delivery of genome editing agents. Nature 553, 217–221 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Miller, J. B. et al. Non-viral CRISPR/Cas gene editing in vitro and in vivo enabled by synthetic nanoparticle co-delivery of Cas9 mRNA and sgRNA. Angew. Chem. Int. Ed. 56, 1059–1063 (2017).

    CAS 

    Google Scholar 

  • Jiang, C. et al. A non-viral CRISPR/Cas9 delivery system for therapeutically targeting HBV DNA and pcsk9 in vivo. Cell Res. 27, 440–443 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yin, H. et al. Structure-guided chemical modification of guide RNA enables potent non-viral in vivo genome editing. Nat. Biotechnol. 35, 1179–1187 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Finn, J. D. et al. A single administration of CRISPR/Cas9 lipid nanoparticles achieves robust and persistent in vivo genome editing. Cell Rep. 22, 2227–2235 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rothgangl, T. et al. In vivo adenine base editing of PCSK9 in macaques reduces LDL cholesterol levels. Nat. Biotechnol. 39, 949–957 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Musunuru, K. et al. In vivo CRISPR base editing of PCSK9 durably lowers cholesterol in primates. Nature 593, 429–434 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, X. et al. Functionalized lipid-like nanoparticles for in vivo mRNA delivery and base editing. Sci. Adv. 6, eabc2315 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lorenzer, C., Dirin, M., Winkler, A. M., Baumann, V. & Winkler, J. Going beyond the liver: progress and challenges of targeted delivery of siRNA therapeutics. J. Control. Release 203, 1–15 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Semple, S. C. et al. Rational design of cationic lipids for siRNA delivery. Nat. Biotechnol. 28, 172–176 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dong, Y. et al. Lipopeptide nanoparticles for potent and selective siRNA delivery in rodents and nonhuman primates. Proc. Natl Acad. Sci. USA 111, 3955–3960 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Love, K. T. et al. Lipid-like materials for low-dose, in vivo gene silencing. Proc. Natl Acad. Sci. USA 107, 1864–1869 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Blanco, E., Shen, H. & Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 33, 941–951 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, S. et al. Membrane-destabilizing ionizable phospholipids for organ-selective mRNA delivery and CRISPR–Cas gene editing. Nat. Mater. 20, 701–710 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cheng, Q. et al. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR–Cas gene editing. Nat. Nanotechnol. 15, 313–320 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tsoi, K. M. et al. Mechanism of hard-nanomaterial clearance by the liver. Nat. Mater. 15, 1212–1221 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zlatev, I. et al. Reversal of siRNA-mediated gene silencing in vivo. Nat. Biotechnol. 36, 509–511 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Landgraf, P. et al. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129, 1401–1414 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lee, J. et al. Tissue-restricted genome editing in vivo specified by microRNA-repressible anti-CRISPR proteins. RNA 25, 1421–1431 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pawluk, A. et al. Naturally occurring off-switches for CRISPR–Cas9. Cell 167, 1829–1838.e1829 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shin, J. et al. Disabling Cas9 by an anti-CRISPR DNA mimic. Sci. Adv. 3, e1701620 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhu, Y., Zhang, F. & Huang, Z. Structural insights into the inactivation of CRISPR–Cas systems by diverse anti-CRISPR proteins. BMC Biol.16, 32 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Maji, B. et al. A high-throughput platform to identify small-molecule inhibitors of CRISPR–Cas9. Cell 177, 1067–1079.e1019. (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Levin, A. A. Treating disease at the RNA level with oligonucleotides. N. Engl. J. Med. 380, 57–70 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Balwani, M. et al. Phase 3 trial of RNAi therapeutic givosiran for acute intermittent porphyria. N. Engl. J. Med. 382, 2289–2301 (2020).

    CAS 

    Google Scholar 

  • Garrelfs, S. LB002ILLUMINATE-A, a phase 3 study of lumasiran, an investigational RNAi therapeutic, in children and adults with primary hyperoxaluria type 1 (PH1). Nephrol. Dial. Transplant. 35, gfaa146.LB002 (2020).

    Google Scholar 

  • Deleavey, G. F. & Damha, M. J. Designing chemically modified oligonucleotides for targeted gene silencing. Chem. Biol. 19, 937–954 (2012).

    CAS 

    Google Scholar 

  • Novobrantseva, T. I. et al. Systemic RNAi-mediated gene silencing in nonhuman primate and rodent myeloid cells. Mol. Ther. Nucleic Acids 1, e4 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Khan, O. F. et al. Endothelial siRNA delivery in nonhuman primates using ionizable low-molecular weight polymeric nanoparticles. Sci. Adv. 4, eaar8409 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yildirim, I., Kierzek, E., Kierzek, R. & Schatz, G. C. Interplay of LNA and 2′-O-methyl RNA in the structure and thermodynamics of RNA hybrid systems: a molecular dynamics study using the revised AMBER force field and comparison with experimental results. J. Phys. Chem. B 118, 14177–14187 (2014).

    CAS 

    Google Scholar 

  • Ni, C. W., Kumar, S., Ankeny, C. J. & Jo, H. Development of immortalized mouse aortic endothelial cell lines. Vasc. Cell 6, 7 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Sago, C. D. et al. High-throughput in vivo screen of functional mRNA delivery identifies nanoparticles for endothelial cell gene editing. Proc. Natl Acad. Sci. USA 115, E9944–E9952 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brinkman, E. K., Chen, T., Amendola, M. & van Steensel, B. Easy quantitative assessment of genome editing by sequence trace decomposition. Nucleic Acids Res. 42, e168 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Raper, A. T., Stephenson, A. A. & Suo, Z. Functional insights revealed by the kinetic mechanism of CRISPR/Cas9. J. Am. Chem. Soc. 140, 2971–2984 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Green, A. A., Silver, P. A., Collins, J. J. & Yin, P. Toehold switches: de-novo-designed regulators of gene expression. Cell 159, 925–939 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zetsche, B. et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR–Cas system. Cell 163, 759–771 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, B. et al. Engineering CRISPR–Cpf1 crRNAs and mRNAs to maximize genome editing efficiency. Nat. Biomed. Eng. 1, 0066 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhong, G., Wang, H., Li, Y., Tran, M. H. & Farzan, M. Cpf1 proteins excise CRISPR RNAs from mRNA transcripts in mammalian cells. Nat. Chem. Biol. 13, 839–841 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, B. et al. Synthetic oligonucleotides inhibit CRISPR-Cpf1-mediated genome editing. Cell Rep. 25, 3262–3272.e3 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shen, X. & Corey, D. R. Chemistry, mechanism and clinical status of antisense oligonucleotides and duplex RNAs. Nucleic Acids Res. 46, 1584–1600 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, D. et al. Rapid discovery of potent siRNA-containing lipid nanoparticles enabled by controlled microfluidic formulation. J. Am. Chem. Soc. 134, 6948–6951 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cullis, P. R. & Hope, M. J. Lipid nanoparticle systems for enabling gene therapies. Mol. Ther. 25, 1467–1475 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Platt, R. J. et al. CRISPR–Cas9 knockin mice for genome editing and cancer modeling. Cell 159, 440–455 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dahlman, J. E. et al. In vivo endothelial siRNA delivery using polymeric nanoparticles with low molecular weight. Nat. Nanotechnol. 9, 648–655 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xue, W. et al. Small RNA combination therapy for lung cancer. Proc. Natl Acad. Sci. USA 111, E3553–E3561 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bartlett, D. W. & Davis, M. E. Insights into the kinetics of siRNA-mediated gene silencing from live-cell and live-animal bioluminescent imaging. Nucleic Acids Res. 34, 322–333 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hickerson, R. P. et al. Stability study of unmodified siRNA and relevance to clinical use. Oligonucleotides 18, 345–354 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ray, K. K. et al. Inclisiran in patients at high cardiovascular risk with elevated LDL cholesterol. N. Engl. J. Med. 376, 1430–1440 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sanhueza, C. A. et al. Efficient liver targeting by polyvalent display of a compact ligand for the asialoglycoprotein receptor. J. Am. Chem. Soc. 139, 3528–3536 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sehgal, A. et al. An RNAi therapeutic targeting antithrombin to rebalance the coagulation system and promote hemostasis in hemophilia. Nat. Med. 21, 492–497 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gerwin, N. et al. Prolonged eosinophil accumulation in allergic lung interstitium of ICAM-2 deficient mice results in extended hyperresponsiveness. Immunity 10, 9–19 (1999).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ganzalo, J. A. et al. Mouse eotaxin expression parallels eosinophil accumulation during lung allergic inflammation but it is not restricted to a Th2-type response. Immunity 4, 1–14 (1996).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Alterman, J. F. et al. A divalent siRNA chemical scaffold for potent and sustained modulation of gene expression throughout the central nervous system. Nat. Biotechnol. 37, 884–894 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brown, J. M. et al. Ligand conjugated multimeric siRNAs enable enhanced uptake and multiplexed gene silencing. Nucleic Acid Ther. 29, 239–244 (2019).

    Google Scholar 

  • Kishimoto, T. K. et al. Improving the efficacy and safety of biologic drugs with tolerogenic nanoparticles. Nat. Nanotechnol. 11, 890–899 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Barros, S. A. & Gollob, J. A. Safety profile of RNAi nanomedicines. Adv. Drug Deliv. Rev. 64, 1730–1737 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Source link