Preloader

Assessing effectiveness of Komagataeibacter strains for producing surface-microstructured cellulose via guided assembly-based biolithography

  • 1.

    Gullo, M., La China, S., Falcone, P. M. & Giudici, P. Biotechnological production of cellulose by acetic acid bacteria: Current state and perspectives. Appl. Microbiol. Biotechnol. 102, 6885–6898 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 2.

    George, J., Ramana, K. V., Sabapathy, S. N., Jagannath, J. H. & Bawa, A. S. Characterization of chemically treated bacterial (Acetobacter xylinum) biopolymer: Some thermo-mechanical properties. Int. J. Biol. Macromol. 37, 189–194 (2005).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 3.

    Chawla, P. R., Bajaj, I. B., Survase, S. A. & Singhal, R. S. Microbial cellulose: Fermentative production and applications. Food Technol. Biotechnol. 47, 107–124 (2009).

    CAS 

    Google Scholar 

  • 4.

    Grande, C. J., Torres, F. G., Gomez, C. M. & Carmen Bañó, M. Nanocomposites of bacterial cellulose/hydroxyapatite for biomedical applications. Acta Biomater. 5, 1605–1615 (2009).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 5.

    Gallegos, A. M. A., Carrera, S. H., Parra, R., Keshavarz, T. & Iqbal, H. M. N. Bacterial cellulose: A sustainable source to develop value-added products – A review. BioResources 11, 5641–5655 (2016).

    CAS 
    Article 

    Google Scholar 

  • 6.

    Ullah, H., Santos, H. A. & Khan, T. Applications of bacterial cellulose in food, cosmetics and drug delivery. Cellulose 23, 2291–2314 (2016).

    CAS 
    Article 

    Google Scholar 

  • 7.

    Gomes, R. J., de Borges, M. F., de Rosa, M. F., Castro-Gómez, R. J. H. & Spinosa, W. A. Acetic acid bacteria in the food industry: Systematics, characteristics and applications. Food Technol. Biotechnol. 56, 139–151 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 8.

    Vigentini, I. et al. Set-Up of bacterial cellulose production from the genus Komagataeibacter and its use in a gluten-free bakery product as a case study. Front. Microbiol. 10, 1–13 (2019).

    Article 

    Google Scholar 

  • 9.

    Mubashir, M. et al. Cellulose acetate-based membranes by interfacial engineering and integration of ZIF-62 glass nanoparticles for CO2 separation. J. Hazard. Mater. 415 (2021).

  • 10.

    Shi, Z., Zhang, Y., Phillips, G. O. & Yang, G. Utilization of bacterial cellulose in food. Food Hydrocoll. 35, 539–545 (2014).

    CAS 
    Article 

    Google Scholar 

  • 11.

    Bourdichon, F. et al. Food fermentations: Microorganisms with technological beneficial use. Int. J. Food Microbiol. 154, 87–97 (2012).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 12.

    Koutsoumanis, K. et al. Update of the list of QPS-recommended biological agents intentionally added to food or feed as notified to EFSA 9: Suitability of taxonomic units notified to EFSA until september 2018. EFSA J. 17, 1–46 (2019).

    Google Scholar 

  • 13.

    Volova, T. G., Prudnikova, S. V., Sukovatyi, A. G. & Shishatskaya, E. I. Production and properties of bacterial cellulose by the strain Komagataeibacter xylinus B-12068. Appl. Microbiol. Biotechnol. 102, 7417–7428 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 14.

    Almeida, T., Silvestre, A. J. D., Vilela, C. & Freire, C. S. R. Bacterial nanocellulose toward green cosmetics: Recent progresses and challenges. Int. J. Mol. Sci. 22, 1–25 (2021).

    Google Scholar 

  • 15.

    Czaja, W., Krystynowicz, A., Bielecki, S. & Brown, R. M. Microbial cellulose—The natural power to heal wounds. Biomaterials 27, 145–151 (2006).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 16.

    Jiji, S., Udhayakumar, S., Rose, C., Muralidharan, C. & Kadirvelu, K. Thymol enriched bacterial cellulose hydrogel as effective material for third degree burn wound repair. Int. J. Biol. Macromol. 122, 452–460 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 17.

    Picheth, G. F. et al. Bacterial cellulose in biomedical applications: A review. Int. J. Biol. Macromol. 104, 97–106 (2017).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 18.

    Bongiorni, M. G. et al. Il rischio iatrogeno connesso all’impianto di pacemaker e defibrillatori. G. Ital. Cardiol. 10, 395–406 (2009).

    Google Scholar 

  • 19.

    Nagmetova, G., Berthold-Pluta, A., Garbowska, M., Kurmanbayev, A. & Stasiak-Rózańska, L. Antibacterial activity of biocellulose with oregano essential oil against Cronobacter strains. Polymers (Basel). 12, 1–10 (2020).

    Article 
    CAS 

    Google Scholar 

  • 20.

    Robotti, F. et al. Microengineered biosynthesized cellulose as anti-fibrotic in vivo protection for cardiac implantable electronic devices. Biomaterials 229, 119583 (2020).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 21.

    Robotti, F. Surface microstructuring for control of cellular activities and bio-synthesized cellulose biolithography. ETH Zurich https://doi.org/10.3929/ethz-b-000171210 (2017).

    Article 

    Google Scholar 

  • 22.

    Cacicedo, M. L. et al. Progress in bacterial cellulose matrices for biotechnological applications. Bioresour. Technol. 213, 172–180 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 23.

    Anton-Sales, I. et al. In vivo soft tissue reinforcement with bacterial nanocellulose. Biomater. Sci. 9, 3040–3050 (2021).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 24.

    Bottan, S. et al. Surface-structured bacterial cellulose with guided assembly-based biolithography (GAB). ACS Nano 9, 206–219 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 25.

    Robotti, F. et al. A micron-scale surface topography design reducing cell adhesion to implanted materials. Sci. Rep. 8, 1–13 (2018).

    CAS 
    Article 

    Google Scholar 

  • 26.

    La China, S. et al. Kombucha tea as a reservoir of cellulose producing bacteria: Assessing diversity among Komagataeibacter isolates. Appl. Sci. 11, 1595 (2021).

    Article 
    CAS 

    Google Scholar 

  • 27.

    Tsouko, E. et al. Bacterial cellulose production from industrial waste and by-product streams. Int. J. Mol. Sci. 16, 14832–14849 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 28.

    Fijałkowski, K., Zywicka, A., Drozd, R., Kordas, M. & Rakoczy, R. Effect of Gluconacetobacter xylinus cultivation conditions on the selected properties of bacterial cellulose. Polish J. Chem. Technol. 18, 117–123 (2016).

    Article 
    CAS 

    Google Scholar 

  • 29.

    Chen, S. Q. et al. Characterisation of bacterial cellulose from diverse Komagataeibacter strains and their application to construct plant cell wall analogues. Cellulose 24, 1211–1226 (2017).

    CAS 
    Article 

    Google Scholar 

  • 30.

    Gullo, M. et al. Increased production of bacterial cellulose as starting point for scaled-up applications. Appl. Microbiol. Biotechnol. 101, 8115–8127 (2017).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 31.

    La China, S. et al. Genome sequencing and phylogenetic analysis of K1G4: A new Komagataeibacter strain producing bacterial cellulose from different carbon sources. Biotechnol. Lett. 42, 807–818 (2020).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 32.

    La China, S., Zanichelli, G., De Vero, L. & Gullo, M. Oxidative fermentations and exopolysaccharides production by acetic acid bacteria: A mini review. Biotechnol. Lett. 40, 1289–1302 (2018).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 33.

    Gullo, M., La China, S., Petroni, G., Di Gregorio, S. & Giudici, P. Exploring K2G30 genome: A high bacterial cellulose producing strain in glucose and mannitol based media. Front. Microbiol. 10, 58 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 34.

    Toyosaki, H. et al. The characterization of an acetic acid bacterium useful for producing bacterial cellulose in agitation cultures: The proposal of Acetobacter xylinum subsp. sucrofermentans subsp. nov.. J. Gen. Appl. Microbiol. 41, 307–314 (1995).

    CAS 
    Article 

    Google Scholar 

  • 35.

    Mamlouk, D. & Gullo, M. Acetic acid bacteria: Physiology and carbon sources oxidation. Indian J. Microbiol. 53, 377–384 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 36.

    Gillis, M. & De Ley, J. Intra- and intergeneric similarities of the ribosomal ribonucleic acid cistrons of Acetobacter and Gluconobacter. Int. J. Syst. Bacteriol. 30, 7–27 (1980).

    CAS 
    Article 

    Google Scholar 

  • 37.

    Semjonovs, P. et al. Cellulose synthesis by Komagataeibacter rhaeticus strain P 1463 isolated from Kombucha. Appl. Microbiol. Biotechnol. 101, 1003–1012 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 38.

    Yamada, Y. Systematics of acetic acid bacteria. in Acetic Acid Bacteria: Ecology and Physiology. 1–50. https://doi.org/10.1007/978-4-431-55933-7_1 (Springer, 2016).

  • 39.

    Römling, U. & Galperin, M. Y. Bacterial cellulose biosynthesis: Diversity of operons, subunits, products, and functions. Trends Microbiol. 23, 545–557 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 40.

    Valera, M. J., Torija, M. J., Mas, A. & Mateo, E. Cellulose production and cellulose synthase gene detection in acetic acid bacteria. Appl. Microbiol. Biotechnol. 99, 1349–1361 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 41.

    Liu, M. et al. Complete genome analysis of Gluconacetobacter xylinus CGMCC 2955 for elucidating bacterial cellulose biosynthesis and metabolic regulation. Sci. Rep. 8, 6266 (2018).

    PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 

  • 42.

    Azuma, Y. et al. Whole-genome analyses reveal genetic instability of Acetobacter pasteurianus. Nucleic Acids Res. 17, 5768–5783 (2009).

    Article 
    CAS 

    Google Scholar 

  • 43.

    Gullo, M., Mamlouk, D., De Vero, L. & Giudici, P. Acetobacter pasteurianus strain AB0220: Cultivability and phenotypic stability over 9 years of preservation. Curr. Microbiol. 6, 576–580 (2012).

    Article 
    CAS 

    Google Scholar 

  • 44.

    Hestrin, S. & Schramm, M. Synthesis of cellulose by Acetobacter xylinum. II. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochem. J. 58, 345–352 (1954).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 45.

    Steel, R. & Walker, T. K. A comparative study of cellulose-producing cultures and celluloseless mutants of certain Acetobacter spp.. J. Gen. Microb. 17, 445–453 (1957).

    CAS 
    Article 

    Google Scholar 

  • 46.

    Hu, L. et al. In-situ grafting to improve polarity of polyacrylonitrile hollow fiber-supported polydimethysiloxane membranes for CO2 separation. J Colloid Interface Sci. 510, 12–19 (2018).

    CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 

  • 47.

    Zhou, Y. et al. Characterization of whey protein isolate and pectin composite film catalyzed by small laccase from Streptomyces coelicolor. Environ. Technol. Innov. 19, 100999 (2020).

    Article 

    Google Scholar 

  • 48.

    Niu, X. et al. Small Laccase from Streptomyces coelicolor catalyzed chitosan-pectin blending film for hazardous gas removal. Environ. Technol. Innov. 23, 101690 (2021).

    CAS 
    Article 

    Google Scholar 

  • 49.

    Shiku, H. et al. Oxygen permeability of surface-modified poly(dimethylsiloxane) characterized by scanning electrochemical microscopy. Chem. Lett. 35, 234–235 (2006).

    CAS 
    Article 

    Google Scholar 

  • 50.

    Wolf, M. P., Salieb-Beugelaar, G. B. & Hunziker, P. PDMS with designer functionalities—Properties, modifications strategies, and applications. Prog. Polym. Sci. 83, 97–134 (2018).

    CAS 
    Article 

    Google Scholar 

  • 51.

    Yamada, Y. et al. Description of Komagataeibacter gen. nov., with proposals of new combinations (Acetobacteraceae). J. Gen. Appl. Microbiol. 58, 397–404 (2012).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 52.

    De Vero, L. et al. Preservation, characterization and exploitation of microbial biodiversity: The perspective of the italian network of culture collections. Microorganisms 7, 685 (2019).

    PubMed Central 
    Article 

    Google Scholar 

  • 53.

    Navarro, R. R. & Komagata, K. Differentiation of Gluconacetobacter liquefaciens and Gluconacetobacter xylinus on the basis of DNA base composition, DNA relatedness, and oxidation products from glucose. J. Gen. Appl. Microbiol. 45, 7–15 (1999).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 54.

    Hwang, J. W., Yang, Y. K., Hwang, J. K., Pyun, Y. R. & Kim, Y. S. Effects of pH and dissolved oxygen on cellulose production by Acetobacter xylinum BRC5 in agitated culture. J. Biosci. Bioeng. 88, 183–188 (1999).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 55.

    Haghighi, H. et al. Characterization of bio-nanocomposite films based on gelatin/polyvinyl alcohol blend reinforced with bacterial cellulose nanowhiskers for food packaging applications. Food Hydrocoll. 113, 106454 (2021).

    CAS 
    Article 

    Google Scholar 

  • 56.

    Wickham, H. Ggplot2. Wiley Interdiscip. Rev. Comput. Stat. 3, 180–185 (2011).

    Article 

    Google Scholar 

  • Source link