Gullo, M., La China, S., Falcone, P. M. & Giudici, P. Biotechnological production of cellulose by acetic acid bacteria: Current state and perspectives. Appl. Microbiol. Biotechnol. 102, 6885–6898 (2018).
Google Scholar
George, J., Ramana, K. V., Sabapathy, S. N., Jagannath, J. H. & Bawa, A. S. Characterization of chemically treated bacterial (Acetobacter xylinum) biopolymer: Some thermo-mechanical properties. Int. J. Biol. Macromol. 37, 189–194 (2005).
Google Scholar
Chawla, P. R., Bajaj, I. B., Survase, S. A. & Singhal, R. S. Microbial cellulose: Fermentative production and applications. Food Technol. Biotechnol. 47, 107–124 (2009).
Google Scholar
Grande, C. J., Torres, F. G., Gomez, C. M. & Carmen Bañó, M. Nanocomposites of bacterial cellulose/hydroxyapatite for biomedical applications. Acta Biomater. 5, 1605–1615 (2009).
Google Scholar
Gallegos, A. M. A., Carrera, S. H., Parra, R., Keshavarz, T. & Iqbal, H. M. N. Bacterial cellulose: A sustainable source to develop value-added products – A review. BioResources 11, 5641–5655 (2016).
Google Scholar
Ullah, H., Santos, H. A. & Khan, T. Applications of bacterial cellulose in food, cosmetics and drug delivery. Cellulose 23, 2291–2314 (2016).
Google Scholar
Gomes, R. J., de Borges, M. F., de Rosa, M. F., Castro-Gómez, R. J. H. & Spinosa, W. A. Acetic acid bacteria in the food industry: Systematics, characteristics and applications. Food Technol. Biotechnol. 56, 139–151 (2018).
Google Scholar
Vigentini, I. et al. Set-Up of bacterial cellulose production from the genus Komagataeibacter and its use in a gluten-free bakery product as a case study. Front. Microbiol. 10, 1–13 (2019).
Google Scholar
Mubashir, M. et al. Cellulose acetate-based membranes by interfacial engineering and integration of ZIF-62 glass nanoparticles for CO2 separation. J. Hazard. Mater. 415 (2021).
Shi, Z., Zhang, Y., Phillips, G. O. & Yang, G. Utilization of bacterial cellulose in food. Food Hydrocoll. 35, 539–545 (2014).
Google Scholar
Bourdichon, F. et al. Food fermentations: Microorganisms with technological beneficial use. Int. J. Food Microbiol. 154, 87–97 (2012).
Google Scholar
Koutsoumanis, K. et al. Update of the list of QPS-recommended biological agents intentionally added to food or feed as notified to EFSA 9: Suitability of taxonomic units notified to EFSA until september 2018. EFSA J. 17, 1–46 (2019).
Volova, T. G., Prudnikova, S. V., Sukovatyi, A. G. & Shishatskaya, E. I. Production and properties of bacterial cellulose by the strain Komagataeibacter xylinus B-12068. Appl. Microbiol. Biotechnol. 102, 7417–7428 (2018).
Google Scholar
Almeida, T., Silvestre, A. J. D., Vilela, C. & Freire, C. S. R. Bacterial nanocellulose toward green cosmetics: Recent progresses and challenges. Int. J. Mol. Sci. 22, 1–25 (2021).
Czaja, W., Krystynowicz, A., Bielecki, S. & Brown, R. M. Microbial cellulose—The natural power to heal wounds. Biomaterials 27, 145–151 (2006).
Google Scholar
Jiji, S., Udhayakumar, S., Rose, C., Muralidharan, C. & Kadirvelu, K. Thymol enriched bacterial cellulose hydrogel as effective material for third degree burn wound repair. Int. J. Biol. Macromol. 122, 452–460 (2019).
Google Scholar
Picheth, G. F. et al. Bacterial cellulose in biomedical applications: A review. Int. J. Biol. Macromol. 104, 97–106 (2017).
Google Scholar
Bongiorni, M. G. et al. Il rischio iatrogeno connesso all’impianto di pacemaker e defibrillatori. G. Ital. Cardiol. 10, 395–406 (2009).
Nagmetova, G., Berthold-Pluta, A., Garbowska, M., Kurmanbayev, A. & Stasiak-Rózańska, L. Antibacterial activity of biocellulose with oregano essential oil against Cronobacter strains. Polymers (Basel). 12, 1–10 (2020).
Google Scholar
Robotti, F. et al. Microengineered biosynthesized cellulose as anti-fibrotic in vivo protection for cardiac implantable electronic devices. Biomaterials 229, 119583 (2020).
Google Scholar
Robotti, F. Surface microstructuring for control of cellular activities and bio-synthesized cellulose biolithography. ETH Zurich https://doi.org/10.3929/ethz-b-000171210 (2017).
Google Scholar
Cacicedo, M. L. et al. Progress in bacterial cellulose matrices for biotechnological applications. Bioresour. Technol. 213, 172–180 (2016).
Google Scholar
Anton-Sales, I. et al. In vivo soft tissue reinforcement with bacterial nanocellulose. Biomater. Sci. 9, 3040–3050 (2021).
Google Scholar
Bottan, S. et al. Surface-structured bacterial cellulose with guided assembly-based biolithography (GAB). ACS Nano 9, 206–219 (2015).
Google Scholar
Robotti, F. et al. A micron-scale surface topography design reducing cell adhesion to implanted materials. Sci. Rep. 8, 1–13 (2018).
Google Scholar
La China, S. et al. Kombucha tea as a reservoir of cellulose producing bacteria: Assessing diversity among Komagataeibacter isolates. Appl. Sci. 11, 1595 (2021).
Google Scholar
Tsouko, E. et al. Bacterial cellulose production from industrial waste and by-product streams. Int. J. Mol. Sci. 16, 14832–14849 (2015).
Google Scholar
Fijałkowski, K., Zywicka, A., Drozd, R., Kordas, M. & Rakoczy, R. Effect of Gluconacetobacter xylinus cultivation conditions on the selected properties of bacterial cellulose. Polish J. Chem. Technol. 18, 117–123 (2016).
Google Scholar
Chen, S. Q. et al. Characterisation of bacterial cellulose from diverse Komagataeibacter strains and their application to construct plant cell wall analogues. Cellulose 24, 1211–1226 (2017).
Google Scholar
Gullo, M. et al. Increased production of bacterial cellulose as starting point for scaled-up applications. Appl. Microbiol. Biotechnol. 101, 8115–8127 (2017).
Google Scholar
La China, S. et al. Genome sequencing and phylogenetic analysis of K1G4: A new Komagataeibacter strain producing bacterial cellulose from different carbon sources. Biotechnol. Lett. 42, 807–818 (2020).
Google Scholar
La China, S., Zanichelli, G., De Vero, L. & Gullo, M. Oxidative fermentations and exopolysaccharides production by acetic acid bacteria: A mini review. Biotechnol. Lett. 40, 1289–1302 (2018).
Google Scholar
Gullo, M., La China, S., Petroni, G., Di Gregorio, S. & Giudici, P. Exploring K2G30 genome: A high bacterial cellulose producing strain in glucose and mannitol based media. Front. Microbiol. 10, 58 (2019).
Google Scholar
Toyosaki, H. et al. The characterization of an acetic acid bacterium useful for producing bacterial cellulose in agitation cultures: The proposal of Acetobacter xylinum subsp. sucrofermentans subsp. nov.. J. Gen. Appl. Microbiol. 41, 307–314 (1995).
Google Scholar
Mamlouk, D. & Gullo, M. Acetic acid bacteria: Physiology and carbon sources oxidation. Indian J. Microbiol. 53, 377–384 (2013).
Google Scholar
Gillis, M. & De Ley, J. Intra- and intergeneric similarities of the ribosomal ribonucleic acid cistrons of Acetobacter and Gluconobacter. Int. J. Syst. Bacteriol. 30, 7–27 (1980).
Google Scholar
Semjonovs, P. et al. Cellulose synthesis by Komagataeibacter rhaeticus strain P 1463 isolated from Kombucha. Appl. Microbiol. Biotechnol. 101, 1003–1012 (2017).
Google Scholar
Yamada, Y. Systematics of acetic acid bacteria. in Acetic Acid Bacteria: Ecology and Physiology. 1–50. https://doi.org/10.1007/978-4-431-55933-7_1 (Springer, 2016).
Römling, U. & Galperin, M. Y. Bacterial cellulose biosynthesis: Diversity of operons, subunits, products, and functions. Trends Microbiol. 23, 545–557 (2015).
Google Scholar
Valera, M. J., Torija, M. J., Mas, A. & Mateo, E. Cellulose production and cellulose synthase gene detection in acetic acid bacteria. Appl. Microbiol. Biotechnol. 99, 1349–1361 (2015).
Google Scholar
Liu, M. et al. Complete genome analysis of Gluconacetobacter xylinus CGMCC 2955 for elucidating bacterial cellulose biosynthesis and metabolic regulation. Sci. Rep. 8, 6266 (2018).
Google Scholar
Azuma, Y. et al. Whole-genome analyses reveal genetic instability of Acetobacter pasteurianus. Nucleic Acids Res. 17, 5768–5783 (2009).
Google Scholar
Gullo, M., Mamlouk, D., De Vero, L. & Giudici, P. Acetobacter pasteurianus strain AB0220: Cultivability and phenotypic stability over 9 years of preservation. Curr. Microbiol. 6, 576–580 (2012).
Google Scholar
Hestrin, S. & Schramm, M. Synthesis of cellulose by Acetobacter xylinum. II. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochem. J. 58, 345–352 (1954).
Google Scholar
Steel, R. & Walker, T. K. A comparative study of cellulose-producing cultures and celluloseless mutants of certain Acetobacter spp.. J. Gen. Microb. 17, 445–453 (1957).
Google Scholar
Hu, L. et al. In-situ grafting to improve polarity of polyacrylonitrile hollow fiber-supported polydimethysiloxane membranes for CO2 separation. J Colloid Interface Sci. 510, 12–19 (2018).
Google Scholar
Zhou, Y. et al. Characterization of whey protein isolate and pectin composite film catalyzed by small laccase from Streptomyces coelicolor. Environ. Technol. Innov. 19, 100999 (2020).
Google Scholar
Niu, X. et al. Small Laccase from Streptomyces coelicolor catalyzed chitosan-pectin blending film for hazardous gas removal. Environ. Technol. Innov. 23, 101690 (2021).
Google Scholar
Shiku, H. et al. Oxygen permeability of surface-modified poly(dimethylsiloxane) characterized by scanning electrochemical microscopy. Chem. Lett. 35, 234–235 (2006).
Google Scholar
Wolf, M. P., Salieb-Beugelaar, G. B. & Hunziker, P. PDMS with designer functionalities—Properties, modifications strategies, and applications. Prog. Polym. Sci. 83, 97–134 (2018).
Google Scholar
Yamada, Y. et al. Description of Komagataeibacter gen. nov., with proposals of new combinations (Acetobacteraceae). J. Gen. Appl. Microbiol. 58, 397–404 (2012).
Google Scholar
De Vero, L. et al. Preservation, characterization and exploitation of microbial biodiversity: The perspective of the italian network of culture collections. Microorganisms 7, 685 (2019).
Google Scholar
Navarro, R. R. & Komagata, K. Differentiation of Gluconacetobacter liquefaciens and Gluconacetobacter xylinus on the basis of DNA base composition, DNA relatedness, and oxidation products from glucose. J. Gen. Appl. Microbiol. 45, 7–15 (1999).
Google Scholar
Hwang, J. W., Yang, Y. K., Hwang, J. K., Pyun, Y. R. & Kim, Y. S. Effects of pH and dissolved oxygen on cellulose production by Acetobacter xylinum BRC5 in agitated culture. J. Biosci. Bioeng. 88, 183–188 (1999).
Google Scholar
Haghighi, H. et al. Characterization of bio-nanocomposite films based on gelatin/polyvinyl alcohol blend reinforced with bacterial cellulose nanowhiskers for food packaging applications. Food Hydrocoll. 113, 106454 (2021).
Google Scholar
Wickham, H. Ggplot2. Wiley Interdiscip. Rev. Comput. Stat. 3, 180–185 (2011).
Google Scholar

