Surendran, A. et al. Can polyhydroxyalkanoates be produced efficiently from waste plant and animal oils?. Front. Bioeng. Biotechnol. 8, 169. https://doi.org/10.3389/fbioe.2020.00169 (2020).
Google Scholar
Morohoshi, T. et al. Biofilm formation and degradation of commercially available biodegradable plastic films by bacterial consortiums in freshwater environments. Microbes Environ. 33, 332–335. https://doi.org/10.1264/jsme2.ME18033 (2018).
Google Scholar
Lizarraga-Valderrama, L. R. et al. Modulation of neuronal cell affinity of composite scaffolds based on polyhydroxyalkanoates and bioactive glasses. Biomed. Mater. 15, 045024. https://doi.org/10.1088/1748-605X/ab797b (2020).
Google Scholar
Magnani, C. et al. Interphase design of cellulose nanocrystals/poly(hydroxybutyrate-ran-valerate) bionanocomposites for mechanical and thermal properties tuning. Biomacromol 21, 1892–1901. https://doi.org/10.1021/acs.biomac.9b01760 (2020).
Google Scholar
Sirajudeen, A. A. O., Annuar, M. S. M. & Subramaniam, R. Composite of medium-chain-length polyhydroxyalkanoates-co-methyl acrylate and carbon nanotubes as innovative electrodes modifier in microbial fuel cell. Biotechnol. Appl. Biochem. 68, 307–318. https://doi.org/10.1002/bab.1928 (2021).
Google Scholar
Wong, J. X., Ogura, K., Chen, S. & Rehm, B. H. A. Bioengineered polyhydroxyalkanoates as immobilized enzyme scaffolds for industrial applications. Front. Bioeng. Biotechnol. 8, 156. https://doi.org/10.3389/fbioe.2020.00156 (2020).
Google Scholar
Boesel, L. F., Le Meur, S., Thony-Meyer, L. & Ren, Q. The effect of molecular weight on the material properties of biosynthesized poly(4-hydroxybutyrate). Int. J. Biol. Macromol. 71, 124–130. https://doi.org/10.1016/j.ijbiomac.2014.04.015 (2014).
Google Scholar
Wong, Y. M., Brigham, C. J., Rha, C., Sinskey, A. J. & Sudesh, K. Biosynthesis and characterization of polyhydroxyalkanoate containing high 3-hydroxyhexanoate monomer fraction from crude palm kernel oil by recombinant Cupriavidus necator. Bioresour. Technol. 121, 320–327. https://doi.org/10.1016/j.biortech.2012.07.015 (2012).
Google Scholar
Hiroe, A. et al. Uniformity of monomer composition and material properties of medium-chain-length polyhydroxyalkanoates biosynthesized from pure and crude fatty acids. ACS Sustain. Chem. Eng. 4, 6905–6911. https://doi.org/10.1021/acssuschemeng.6b01851 (2016).
Google Scholar
Xu, P. et al. Enhanced crystallization and storage stability of mechanical properties of biosynthesized poly(3-hydroxybutyrate-co-3-hydroxyhexanate) induced by self-nucleation. Int. J. Biol. Macromol. https://doi.org/10.1016/j.ijbiomac.2021.06.120 (2021).
Google Scholar
Utsunomia, C., Ren, Q. & Zinn, M. Poly(4-hydroxybutyrate): current state and perspectives. Front. Bioeng. Biotechnol. 8, 257. https://doi.org/10.3389/fbioe.2020.00257 (2020).
Google Scholar
Ishii-Hyakutake, M., Mizuno, S. & Tsuge, T. Biosynthesis and characteristics of aromatic polyhydroxyalkanoates. Polymers (Basel) 10, https://doi.org/10.3390/polym10111267 (2018).
Matsumoto, K. & Taguchi, S. Biosynthetic polyesters consisting of 2-hydroxyalkanoic acids: current challenges and unresolved questions. Appl. Microbiol. Biotechnol. 97, 8011–8021. https://doi.org/10.1007/s00253-013-5120-6 (2013).
Google Scholar
Matsumoto, K., Shiba, T., Hiraide, Y. & Taguchi, S. Incorporation of glycolate units promotes hydrolytic degradation in flexible poly(glycolate-co-3-hydroxybutyrate) synthesized by engineered Escherichia coli. ACS Biomater. Sci. Eng. 3, 3058–3063, https://doi.org/10.1021/acsbiomaterials.6b00194 (2017).
Google Scholar
Taguchi, S. et al. A microbial factory for lactate-based polyesters using a lactate-polymerizing enzyme. Proc. Natl. Acad. Sci. USA. 105, 17323–17327. https://doi.org/10.1073/pnas.0805653105 (2008).
Google Scholar
Mizuno, S., Enda, Y., Saika, A., Hiroe, A. & Tsuge, T. Biosynthesis of polyhydroxyalkanoates containing 2-hydroxy-4-methylvalerate and 2-hydroxy-3-phenylpropionate units from a related or unrelated carbon source. J. Biosci. Bioeng. 125, 295–300. https://doi.org/10.1016/j.jbiosc.2017.10.010 (2018).
Google Scholar
Li, Z. J. et al. Biosynthesis of poly(glycolate-co-lactate-co-3-hydroxybutyrate) from glucose by metabolically engineered Escherichia coli. Metab. Eng. 35, 1–8. https://doi.org/10.1016/j.ymben.2016.01.004 (2016).
Google Scholar
Matsumoto, K. & Taguchi, S. Enzyme and metabolic engineering for the production of novel biopolymers: crossover of biological and chemical processes. Curr. Opin. Biotechnol. 24, 1054–1060. https://doi.org/10.1016/j.copbio.2013.02.021 (2013).
Google Scholar
Matsumoto, K. et al. Dynamic changes of intracellular monomer levels regulate block sequence of polyhydroxyalkanoates in engineered Escherichia coli. Biomacromol 19, 662–671. https://doi.org/10.1021/acs.biomac.7b01768 (2018).
Google Scholar
Matsumoto, K., Takase, K., Yamamoto, Y., Doi, Y. & Taguchi, S. Chimeric enzyme composed of polyhydroxyalkanoate (PHA) synthases from Ralstonia eutropha and Aeromonas caviae enhances production of PHAs in recombinant Escherichia coli. Biomacromol 10, 682–685. https://doi.org/10.1021/bm801386j (2009).
Google Scholar
Feng, H. B., Lu, X. Y., Wang, W. Y., Kang, N. G. & Mays, J. W. Block copolymers: synthesis, self-assembly, and applications. Polymers-Basel 9, https://doi.org/10.3390/polym9100494 (2017).
Agrahari, V. & Agrahari, V. Advances and applications of block-copolymer-based nanoformulations. Drug Discov. Today 23, 1139–1151. https://doi.org/10.1016/j.drudis.2018.03.004 (2018).
Google Scholar
Watanabe, K. et al. Downsizing feature of microphase-separated structures via intramolecular crosslinking of block copolymers. Chem. Sci. 10, 3330–3339. https://doi.org/10.1039/c8sc05016c (2019).
Google Scholar
Bates, C. M., Maher, M. J., Janes, D. W., Ellison, C. J. & Willson, C. G. Block copolymer lithography. Macromolecules 47, 2–12. https://doi.org/10.1021/ma401762n (2014).
Google Scholar
Kelley, A. S., Mantzaris, N. V., Daoutidis, P. & Srienc, F. Controlled synthesis of polyhydroxyalkanoic (PHA) nanostructures in R. eutropha. Nano Lett. 1, 481–485, https://doi.org/10.1021/nl015555m (2001).
Ferre-Guell, A. & Winterburn, J. Biosynthesis and characterization of polyhydroxyalkanoates with controlled composition and microstructure. Biomacromol 19, 996–1005. https://doi.org/10.1021/acs.biomac.7b01788 (2018).
Google Scholar
Wang, Y., Chung, A. & Chen, G. Q. Synthesis of medium-chain-length polyhydroxyalkanoate homopolymers, random copolymers, and block copolymers by an engineered strain of Pseudomonas entomophila. Adv Healthc Mater 6, https://doi.org/10.1002/adhm.201601017 (2017).
Buckley, R. M. & Stubbe, J. Chemistry with an artificial primer of polyhydroxybutyrate synthase suggests a mechanism for chain termination. Biochemistry 54, 2117–2125. https://doi.org/10.1021/bi501405b (2015).
Google Scholar
Pederson, E. N., McChalicher, C. W. J. & Srienc, F. Bacterial synthesis of PHA block copolymers. Biomacromol 7, 1904–1911. https://doi.org/10.1021/Bm0510101 (2006).
Google Scholar
Nakaoki, T., Yasui, J. & Komaeda, T. Biosynthesis of P3HBV-b-P3HB-b-P3HBV Triblock Copolymer by Ralstonia eutropha. J. Polym. Environ. 27, 2720–2727. https://doi.org/10.1007/s10924-019-01555-3 (2019).
Google Scholar
Marcal, H. et al. BioPEGylation of polyhydroxyalkanoates: influence on properties and satellite-stem cell cycle. Biomacromol 9, 2719–2726. https://doi.org/10.1021/bm800418e (2008).
Google Scholar
Tomizawa, S. et al. Chain transfer reaction catalyzed by various polyhydroxyalkanoate synthases with poly(ethylene glycol) as an exogenous chain transfer agent. Appl. Microbiol. Biotechnol. 87, 1427–1435. https://doi.org/10.1007/s00253-010-2601-8 (2010).
Google Scholar
Hildenbrand, J. C., Reinhardt, S. & Jendrossek, D. Formation of an organic-inorganic biopolymer: polyhydroxybutyrate-polyphosphate. Biomacromol 20, 3253–3260. https://doi.org/10.1021/acs.biomac.9b00208 (2019).
Google Scholar
Matsumoto, K. et al. One-pot microbial production, mechanical properties and enzymatic degradation of isotactic P[(R)-2-hydroxybutyrate] and its copolymer with (R)-lactate. Biomacromol 14, 1913–1918. https://doi.org/10.1021/bm400278j (2013).
Google Scholar
Matsumoto, K. & Kageyama, Y. Increased production and molecular weight of artificial polyhydroxyalkanoate poly(2-hydroxybutyrate) above the glass transition temperature threshold. Front. Bioeng. Biotechnol. 7, 177. https://doi.org/10.3389/fbioe.2019.00177 (2019).
Google Scholar
Barham, P. J., Keller, A., Otun, E. L. & Holmes, P. A. Crystallization and morphology of a bacterial thermoplastic poly-3-hydroxybutyrate. J Mater Sci 19, 2781–2794. https://doi.org/10.1007/Bf01026954 (1984).
Google Scholar
Tsuji, H. & Tawara, T. Quaternary stereocomplex formation of substituted poly(lactic acid)s, L- and D-configured poly(2-hydroxybutanoic acid)s and L- and D-configured poly(2-hydroxy-3-methylbutanoic acid)s. Polymer 68, 57–64. https://doi.org/10.1016/j.polymer.2015.05.004 (2015).
Google Scholar
Thire, R. M. S. M., Ribeiro, T. A. A. & Andrade, C. T. Effect of starch addition on compression-molded poly(3-hydroxybutyrate)/starch blends. J. Appl. Polym. Sci. 100, 4338–4347. https://doi.org/10.1002/app.23215 (2006).
Google Scholar
Tsuji, H. & Okumura, A. Stereocomplex formation between enantiomeric substituted poly(lactide)s: blends of poly[(S)-2-hydroxybutyrate] and Poly[(R)-2-hydroxybutyrate]. Macromolecules 42, 7263–7266. https://doi.org/10.1021/Ma9015483 (2009).
Google Scholar
Prieto, M. A. et al. Engineering of stable recombinant bacteria for production of chiral medium-chain-length poly-3-hydroxyalkanoates. Appl. Environ. Microbiol. 65, 3265–3271 (1999).
Google Scholar
Kusaka, S., Abe, H., Lee, S. Y. & Doi, Y. Molecular mass of poly[(R)-3-hydroxybutyric acid] produced in a recombinant Escherichia coli. Appl. Microbiol. Biotechnol. 47, 140–143. https://doi.org/10.1007/s002530050902 (1997).
Google Scholar
Matsumoto, K., Takase, K., Aoki, E., Doi, Y. & Taguchi, S. Synergistic effects of Glu130Asp substitution in the type II polyhydroxyalkanoate (PHA) synthase: Enhancement of PHA production and alteration of polymer molecular weight. Biomacromol 6, 99–104 (2005).
Google Scholar
Courtney, T. H. Mechanical behavior of materials. 2nd edn, (McGraw Hill, 2000).
Matsusaki, H., Abe, H. & Doi, Y. Biosynthesis and properties of poly(3-hydroxybutyrate-co-3-hydroxyalkanoates) by recombinant strains of Pseudomonas sp. 61–3. Biomacromolecules 1, 17–22 (2000).
Levine, A. C., Sparano, A., Twigg, F. F., Numata, K. & Nomura, C. T. Influence of cross-linking on the physical properties and cytotoxicity of polyhydroxyalkanoate (PHA) scaffolds for tissue engineering. ACS Biomater Sci Eng 1, 567–576. https://doi.org/10.1021/acsbiomaterials.5b00052 (2015).
Google Scholar
Kajita, T., Noro, A. & Matsushita, Y. Design and properties of supramolecular elastomers. Polymer 128, 297–310. https://doi.org/10.1016/j.polymer.2017.03.010 (2017).
Google Scholar

