Preloader

Artificial polyhydroxyalkanoate poly[2-hydroxybutyrate-block-3-hydroxybutyrate] elastomer-like material

  • 1.

    Surendran, A. et al. Can polyhydroxyalkanoates be produced efficiently from waste plant and animal oils?. Front. Bioeng. Biotechnol. 8, 169. https://doi.org/10.3389/fbioe.2020.00169 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 2.

    Morohoshi, T. et al. Biofilm formation and degradation of commercially available biodegradable plastic films by bacterial consortiums in freshwater environments. Microbes Environ. 33, 332–335. https://doi.org/10.1264/jsme2.ME18033 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 3.

    Lizarraga-Valderrama, L. R. et al. Modulation of neuronal cell affinity of composite scaffolds based on polyhydroxyalkanoates and bioactive glasses. Biomed. Mater. 15, 045024. https://doi.org/10.1088/1748-605X/ab797b (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 4.

    Magnani, C. et al. Interphase design of cellulose nanocrystals/poly(hydroxybutyrate-ran-valerate) bionanocomposites for mechanical and thermal properties tuning. Biomacromol 21, 1892–1901. https://doi.org/10.1021/acs.biomac.9b01760 (2020).

    CAS 
    Article 

    Google Scholar 

  • 5.

    Sirajudeen, A. A. O., Annuar, M. S. M. & Subramaniam, R. Composite of medium-chain-length polyhydroxyalkanoates-co-methyl acrylate and carbon nanotubes as innovative electrodes modifier in microbial fuel cell. Biotechnol. Appl. Biochem. 68, 307–318. https://doi.org/10.1002/bab.1928 (2021).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 6.

    Wong, J. X., Ogura, K., Chen, S. & Rehm, B. H. A. Bioengineered polyhydroxyalkanoates as immobilized enzyme scaffolds for industrial applications. Front. Bioeng. Biotechnol. 8, 156. https://doi.org/10.3389/fbioe.2020.00156 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 7.

    Boesel, L. F., Le Meur, S., Thony-Meyer, L. & Ren, Q. The effect of molecular weight on the material properties of biosynthesized poly(4-hydroxybutyrate). Int. J. Biol. Macromol. 71, 124–130. https://doi.org/10.1016/j.ijbiomac.2014.04.015 (2014).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 8.

    Wong, Y. M., Brigham, C. J., Rha, C., Sinskey, A. J. & Sudesh, K. Biosynthesis and characterization of polyhydroxyalkanoate containing high 3-hydroxyhexanoate monomer fraction from crude palm kernel oil by recombinant Cupriavidus necator. Bioresour. Technol. 121, 320–327. https://doi.org/10.1016/j.biortech.2012.07.015 (2012).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 9.

    Hiroe, A. et al. Uniformity of monomer composition and material properties of medium-chain-length polyhydroxyalkanoates biosynthesized from pure and crude fatty acids. ACS Sustain. Chem. Eng. 4, 6905–6911. https://doi.org/10.1021/acssuschemeng.6b01851 (2016).

    CAS 
    Article 

    Google Scholar 

  • 10.

    Xu, P. et al. Enhanced crystallization and storage stability of mechanical properties of biosynthesized poly(3-hydroxybutyrate-co-3-hydroxyhexanate) induced by self-nucleation. Int. J. Biol. Macromol. https://doi.org/10.1016/j.ijbiomac.2021.06.120 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 11.

    Utsunomia, C., Ren, Q. & Zinn, M. Poly(4-hydroxybutyrate): current state and perspectives. Front. Bioeng. Biotechnol. 8, 257. https://doi.org/10.3389/fbioe.2020.00257 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 12.

    Ishii-Hyakutake, M., Mizuno, S. & Tsuge, T. Biosynthesis and characteristics of aromatic polyhydroxyalkanoates. Polymers (Basel) 10, https://doi.org/10.3390/polym10111267 (2018).

  • 13.

    Matsumoto, K. & Taguchi, S. Biosynthetic polyesters consisting of 2-hydroxyalkanoic acids: current challenges and unresolved questions. Appl. Microbiol. Biotechnol. 97, 8011–8021. https://doi.org/10.1007/s00253-013-5120-6 (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 14.

    Matsumoto, K., Shiba, T., Hiraide, Y. & Taguchi, S. Incorporation of glycolate units promotes hydrolytic degradation in flexible poly(glycolate-co-3-hydroxybutyrate) synthesized by engineered Escherichia coli. ACS Biomater. Sci. Eng. 3, 3058–3063, https://doi.org/10.1021/acsbiomaterials.6b00194 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 15.

    Taguchi, S. et al. A microbial factory for lactate-based polyesters using a lactate-polymerizing enzyme. Proc. Natl. Acad. Sci. USA. 105, 17323–17327. https://doi.org/10.1073/pnas.0805653105 (2008).

    ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 16.

    Mizuno, S., Enda, Y., Saika, A., Hiroe, A. & Tsuge, T. Biosynthesis of polyhydroxyalkanoates containing 2-hydroxy-4-methylvalerate and 2-hydroxy-3-phenylpropionate units from a related or unrelated carbon source. J. Biosci. Bioeng. 125, 295–300. https://doi.org/10.1016/j.jbiosc.2017.10.010 (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 17.

    Li, Z. J. et al. Biosynthesis of poly(glycolate-co-lactate-co-3-hydroxybutyrate) from glucose by metabolically engineered Escherichia coli. Metab. Eng. 35, 1–8. https://doi.org/10.1016/j.ymben.2016.01.004 (2016).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 18.

    Matsumoto, K. & Taguchi, S. Enzyme and metabolic engineering for the production of novel biopolymers: crossover of biological and chemical processes. Curr. Opin. Biotechnol. 24, 1054–1060. https://doi.org/10.1016/j.copbio.2013.02.021 (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 19.

    Matsumoto, K. et al. Dynamic changes of intracellular monomer levels regulate block sequence of polyhydroxyalkanoates in engineered Escherichia coli. Biomacromol 19, 662–671. https://doi.org/10.1021/acs.biomac.7b01768 (2018).

    CAS 
    Article 

    Google Scholar 

  • 20.

    Matsumoto, K., Takase, K., Yamamoto, Y., Doi, Y. & Taguchi, S. Chimeric enzyme composed of polyhydroxyalkanoate (PHA) synthases from Ralstonia eutropha and Aeromonas caviae enhances production of PHAs in recombinant Escherichia coli. Biomacromol 10, 682–685. https://doi.org/10.1021/bm801386j (2009).

    CAS 
    Article 

    Google Scholar 

  • 21.

    Feng, H. B., Lu, X. Y., Wang, W. Y., Kang, N. G. & Mays, J. W. Block copolymers: synthesis, self-assembly, and applications. Polymers-Basel 9, https://doi.org/10.3390/polym9100494 (2017).

  • 22.

    Agrahari, V. & Agrahari, V. Advances and applications of block-copolymer-based nanoformulations. Drug Discov. Today 23, 1139–1151. https://doi.org/10.1016/j.drudis.2018.03.004 (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 23.

    Watanabe, K. et al. Downsizing feature of microphase-separated structures via intramolecular crosslinking of block copolymers. Chem. Sci. 10, 3330–3339. https://doi.org/10.1039/c8sc05016c (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 24.

    Bates, C. M., Maher, M. J., Janes, D. W., Ellison, C. J. & Willson, C. G. Block copolymer lithography. Macromolecules 47, 2–12. https://doi.org/10.1021/ma401762n (2014).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 25.

    Kelley, A. S., Mantzaris, N. V., Daoutidis, P. & Srienc, F. Controlled synthesis of polyhydroxyalkanoic (PHA) nanostructures in R. eutropha. Nano Lett. 1, 481–485, https://doi.org/10.1021/nl015555m (2001).

  • 26.

    Ferre-Guell, A. & Winterburn, J. Biosynthesis and characterization of polyhydroxyalkanoates with controlled composition and microstructure. Biomacromol 19, 996–1005. https://doi.org/10.1021/acs.biomac.7b01788 (2018).

    CAS 
    Article 

    Google Scholar 

  • 27.

    Wang, Y., Chung, A. & Chen, G. Q. Synthesis of medium-chain-length polyhydroxyalkanoate homopolymers, random copolymers, and block copolymers by an engineered strain of Pseudomonas entomophila. Adv Healthc Mater 6, https://doi.org/10.1002/adhm.201601017 (2017).

  • 28.

    Buckley, R. M. & Stubbe, J. Chemistry with an artificial primer of polyhydroxybutyrate synthase suggests a mechanism for chain termination. Biochemistry 54, 2117–2125. https://doi.org/10.1021/bi501405b (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 29.

    Pederson, E. N., McChalicher, C. W. J. & Srienc, F. Bacterial synthesis of PHA block copolymers. Biomacromol 7, 1904–1911. https://doi.org/10.1021/Bm0510101 (2006).

    CAS 
    Article 

    Google Scholar 

  • 30.

    Nakaoki, T., Yasui, J. & Komaeda, T. Biosynthesis of P3HBV-b-P3HB-b-P3HBV Triblock Copolymer by Ralstonia eutropha. J. Polym. Environ. 27, 2720–2727. https://doi.org/10.1007/s10924-019-01555-3 (2019).

    CAS 
    Article 

    Google Scholar 

  • 31.

    Marcal, H. et al. BioPEGylation of polyhydroxyalkanoates: influence on properties and satellite-stem cell cycle. Biomacromol 9, 2719–2726. https://doi.org/10.1021/bm800418e (2008).

    CAS 
    Article 

    Google Scholar 

  • 32.

    Tomizawa, S. et al. Chain transfer reaction catalyzed by various polyhydroxyalkanoate synthases with poly(ethylene glycol) as an exogenous chain transfer agent. Appl. Microbiol. Biotechnol. 87, 1427–1435. https://doi.org/10.1007/s00253-010-2601-8 (2010).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 33.

    Hildenbrand, J. C., Reinhardt, S. & Jendrossek, D. Formation of an organic-inorganic biopolymer: polyhydroxybutyrate-polyphosphate. Biomacromol 20, 3253–3260. https://doi.org/10.1021/acs.biomac.9b00208 (2019).

    CAS 
    Article 

    Google Scholar 

  • 34.

    Matsumoto, K. et al. One-pot microbial production, mechanical properties and enzymatic degradation of isotactic P[(R)-2-hydroxybutyrate] and its copolymer with (R)-lactate. Biomacromol 14, 1913–1918. https://doi.org/10.1021/bm400278j (2013).

    CAS 
    Article 

    Google Scholar 

  • 35.

    Matsumoto, K. & Kageyama, Y. Increased production and molecular weight of artificial polyhydroxyalkanoate poly(2-hydroxybutyrate) above the glass transition temperature threshold. Front. Bioeng. Biotechnol. 7, 177. https://doi.org/10.3389/fbioe.2019.00177 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 36.

    Barham, P. J., Keller, A., Otun, E. L. & Holmes, P. A. Crystallization and morphology of a bacterial thermoplastic poly-3-hydroxybutyrate. J Mater Sci 19, 2781–2794. https://doi.org/10.1007/Bf01026954 (1984).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 37.

    Tsuji, H. & Tawara, T. Quaternary stereocomplex formation of substituted poly(lactic acid)s, L- and D-configured poly(2-hydroxybutanoic acid)s and L- and D-configured poly(2-hydroxy-3-methylbutanoic acid)s. Polymer 68, 57–64. https://doi.org/10.1016/j.polymer.2015.05.004 (2015).

    CAS 
    Article 

    Google Scholar 

  • 38.

    Thire, R. M. S. M., Ribeiro, T. A. A. & Andrade, C. T. Effect of starch addition on compression-molded poly(3-hydroxybutyrate)/starch blends. J. Appl. Polym. Sci. 100, 4338–4347. https://doi.org/10.1002/app.23215 (2006).

    CAS 
    Article 

    Google Scholar 

  • 39.

    Tsuji, H. & Okumura, A. Stereocomplex formation between enantiomeric substituted poly(lactide)s: blends of poly[(S)-2-hydroxybutyrate] and Poly[(R)-2-hydroxybutyrate]. Macromolecules 42, 7263–7266. https://doi.org/10.1021/Ma9015483 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 40.

    Prieto, M. A. et al. Engineering of stable recombinant bacteria for production of chiral medium-chain-length poly-3-hydroxyalkanoates. Appl. Environ. Microbiol. 65, 3265–3271 (1999).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 41.

    Kusaka, S., Abe, H., Lee, S. Y. & Doi, Y. Molecular mass of poly[(R)-3-hydroxybutyric acid] produced in a recombinant Escherichia coli. Appl. Microbiol. Biotechnol. 47, 140–143. https://doi.org/10.1007/s002530050902 (1997).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 42.

    Matsumoto, K., Takase, K., Aoki, E., Doi, Y. & Taguchi, S. Synergistic effects of Glu130Asp substitution in the type II polyhydroxyalkanoate (PHA) synthase: Enhancement of PHA production and alteration of polymer molecular weight. Biomacromol 6, 99–104 (2005).

    CAS 
    Article 

    Google Scholar 

  • 43.

    Courtney, T. H. Mechanical behavior of materials. 2nd edn, (McGraw Hill, 2000).

  • 44.

    Matsusaki, H., Abe, H. & Doi, Y. Biosynthesis and properties of poly(3-hydroxybutyrate-co-3-hydroxyalkanoates) by recombinant strains of Pseudomonas sp. 61–3. Biomacromolecules 1, 17–22 (2000).

  • 45.

    Levine, A. C., Sparano, A., Twigg, F. F., Numata, K. & Nomura, C. T. Influence of cross-linking on the physical properties and cytotoxicity of polyhydroxyalkanoate (PHA) scaffolds for tissue engineering. ACS Biomater Sci Eng 1, 567–576. https://doi.org/10.1021/acsbiomaterials.5b00052 (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 46.

    Kajita, T., Noro, A. & Matsushita, Y. Design and properties of supramolecular elastomers. Polymer 128, 297–310. https://doi.org/10.1016/j.polymer.2017.03.010 (2017).

    CAS 
    Article 

    Google Scholar 

  • Source link