Schanes, K., Dobernig, K. & Gözet, B. Food waste matters-A systematic review of household food waste practices and their policy implications. J. Clean. Prod. 182, 978–991 (2018).
Google Scholar
Stephan, R. et al. Foodborne transmission of listeria monocytogenes via ready-to-eat salad: A nationwide outbreak in Switzerland, 2013–2014. Food Control 57, 14–17 (2015).
Google Scholar
De Souza, L. P. et al. Effects of ozone treatment on post harvest carrot quality. LWT Food Sci. Technol. 90, 53–60 (2018).
Google Scholar
Pandiselvam, R. et al. Ozone based food preservation: A promising green technology for enhanced food safety. Ozone Sci. Eng. 41, 17–34 (2019).
Google Scholar
Al-Wahaibi, A. et al. Techno-economic evaluation of biogas production from food waste via anaerobic digestion. Sci. Rep. 10, 15719 (2020).
Google Scholar
Qasim, U. et al. Renewable cellulosic nanocomposites for food packaging to avoid fossil fuel plastic pollution: A review. Environ. Chem. Lett. 19, 613–641 (2021).
Google Scholar
Mandal, R., Singh, A. & Singh, A. P. Recent developments in cold plasma decontamination technology in the food industry. Trends Food Sci. Technol. 80, 93–103 (2018).
Google Scholar
Barjasteh, A. et al. Recent progress in applications of non-thermal plasma for water purification, bio-sterilization, and decontamination. Appl. Sci. 11(8), 3372 (2021).
Google Scholar
Mastanaiah, N., Banerjee, P., Johnson, J. A. & Roy, S. Examining the role of ozone in surface plasma sterilization using dielectric barrier discharge (DBD) plasma. Plasma Process. Polym. 10(12), 1120–1133 (2013).
Google Scholar
Eliasson, B., Hirth, M. & Kogelschatz, U. Ozone synthesis from oxygen in dielectric barrier discharges. J. Phys. D Appl. Phys. 20(11), 1421 (1987).
Google Scholar
Varol, K., Koc, A. N., Atalay, M. A. & Keles, I. Antifungal activity of olive oil and ozonated olive oil against Candida spp. and Saprochaete spp.. Ozone Sci. Eng. 39, 462–470 (2017).
Google Scholar
Cullen, P. J. et al. Ozone processing for food preservation: An overview on fruit juice treatments. Ozone Sci. Eng. 32, 166–179 (2010).
Google Scholar
FDA. Secondary direct food additives permitted in food for human consumption. Fed. Reg. 66(123), 33829–33830 (2001).
Guzel-Seydim, Z. B., Greene, A. K. & Seydim, A. C. Use of ozone in the food industry. LWT Food Sci. Technol. 37(4), 453–460 (2004).
Google Scholar
Karaca, H. & Velioglu, Y. S. Ozone applications in fruit and vegetable processing. Food Rev. Int. 23(1), 91–106 (2007).
Google Scholar
Bialka, K. L. & Demirci, A. Decontamination of Escherichia coli O157: H7 and Salmonella enterica on blueberries using ozone and pulsed UV-light. J. Food Sci. 72(9), M391–M396 (2007).
Google Scholar
Naitoh, S., Okada, Y. & Sakai, T. Studies on utilization of ozone in food preservation: V. Changes microflora of ozone treated cereals, grains, peas, beans and spices during storage. J. Jap. Soc. Food Sci. Technol. 35, 69–77 (1988).
Google Scholar
Oztekin, S., Zorlugenc, B. & Zorlugenc, F. K. Effects of ozone treatment on microflora of dried figs. J. Food Eng. 75(3), 396–399 (2006).
Google Scholar
Najafi, M. B. H. & Khodaparast, M. H. H. Efficacy of ozone to reduce microbial populations in date fruits. Food Control 20(1), 27–30 (2009).
Google Scholar
Khadre, M. A., Yousef, A. E. & Kim, J. G. Microbiological aspects of ozone applications in food: A review. J. Food Sci. 66(9), 1242–1252 (2001).
Google Scholar
Loeb, B. L. Ozone: science & engineering: Thirty-three years and growing. Ozone Sci. Eng. 33(4), 329–342 (2011).
Google Scholar
Pandiselvam, R., Thirupathi, V. & Anandakumar, S. Reaction kinetics of ozone gas in paddy grains. J. Food Process. Eng. 38(6), 594–600 (2015).
Google Scholar
Rodoni, L., Casadei, N., Concellón, A., Chaves Alicia, A. R. & Vicente, A. R. Effect of short-term ozone treatments on tomato (Solanum lycopersicum L.) fruit quality and cell wall degradation. J. Agric. Food Chem. 58(1), 594–599 (2010).
Google Scholar
Choudhury, B. et al. Inactivation of Pseudomonas aeruginosa and Methicillin-resistant Staphylococcus aureus in an open water system with ozone generated by a compact, atmospheric DBD plasma reactor. Sci. Rep. 8, 17573 (2018).
Google Scholar
Sorlini, S. & Collivignarelli, C. Trihalomethane formation during chemical oxidation with chlorine, chlorine dioxide and ozone of ten Italian natural waters. Desalination 176, 103–111 (2005).
Google Scholar
Croué, J. P., Koudjonou, B. K. & Legube, B. Parameters affecting the formation of bromate ion during ozonation. Ozone Sci. Eng. 18, 1–18 (1996).
Google Scholar
Roy, S. & Portugal, S. Compact Portable Plasma Reactor. US patent 10,651,014 issued on May 12, 2020.
Ashpis, D. E., Laun, M. C. & Griebeler, E. L. Progress toward accurate measurement of dielectric barrier discharge plasma actuator power. AIAA J. 55(7), 2254–2268 (2017).
Google Scholar
Durscher, R. & Roy, S. Evaluation of thrust measurement techniques for dielectric barrier discharge actuators. Exp. Fluids 53, 1165–1176 (2012).
Google Scholar
Mancinelli, R. L. & McKay, C. P. Effects of nitric oxide and nitrogen dioxide on bacterial growth. Appl. Environ. Microbiol. 46, 198–202 (1983).
Google Scholar
2B Technologies, Inc. Ozone Monitor Manual. 2B Technologies. https://twobtech.com/docs/manuals/model_202_revJ.pdf. (2001).
Rodoni, L., Casadei, N., Concellón, A., Alicia, A. R. & Vicente, A. R. Effect of short-term ozone treatments on tomato (Solanum lycopersicum L.) fruit quality and cell wall degradation. J. Agric. Food Chem. 58(1), 594–599 (2010).
Google Scholar
Aguayo, E., Escalona, V. H. & Artés, F. Effect of cyclic exposure to ozone gas on physicochemical, sensorial and microbial quality of whole and sliced tomatoes. Postharvest. Biol. Technol. 39(2), 169–177 (2006).
Google Scholar

