Preloader

Application of dielectric barrier discharge for improving food shelf life and reducing spoilage

  • 1.

    Schanes, K., Dobernig, K. & Gözet, B. Food waste matters-A systematic review of household food waste practices and their policy implications. J. Clean. Prod. 182, 978–991 (2018).

    Article 

    Google Scholar 

  • 2.

    Stephan, R. et al. Foodborne transmission of listeria monocytogenes via ready-to-eat salad: A nationwide outbreak in Switzerland, 2013–2014. Food Control 57, 14–17 (2015).

    Article 

    Google Scholar 

  • 3.

    De Souza, L. P. et al. Effects of ozone treatment on post harvest carrot quality. LWT Food Sci. Technol. 90, 53–60 (2018).

    Article 

    Google Scholar 

  • 4.

    Pandiselvam, R. et al. Ozone based food preservation: A promising green technology for enhanced food safety. Ozone Sci. Eng. 41, 17–34 (2019).

    CAS 
    Article 

    Google Scholar 

  • 5.

    Al-Wahaibi, A. et al. Techno-economic evaluation of biogas production from food waste via anaerobic digestion. Sci. Rep. 10, 15719 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 6.

    Qasim, U. et al. Renewable cellulosic nanocomposites for food packaging to avoid fossil fuel plastic pollution: A review. Environ. Chem. Lett. 19, 613–641 (2021).

    CAS 
    Article 

    Google Scholar 

  • 7.

    Mandal, R., Singh, A. & Singh, A. P. Recent developments in cold plasma decontamination technology in the food industry. Trends Food Sci. Technol. 80, 93–103 (2018).

    CAS 
    Article 

    Google Scholar 

  • 8.

    Barjasteh, A. et al. Recent progress in applications of non-thermal plasma for water purification, bio-sterilization, and decontamination. Appl. Sci. 11(8), 3372 (2021).

    CAS 
    Article 

    Google Scholar 

  • 9.

    Mastanaiah, N., Banerjee, P., Johnson, J. A. & Roy, S. Examining the role of ozone in surface plasma sterilization using dielectric barrier discharge (DBD) plasma. Plasma Process. Polym. 10(12), 1120–1133 (2013).

    CAS 
    Article 

    Google Scholar 

  • 10.

    Eliasson, B., Hirth, M. & Kogelschatz, U. Ozone synthesis from oxygen in dielectric barrier discharges. J. Phys. D Appl. Phys. 20(11), 1421 (1987).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 11.

    Varol, K., Koc, A. N., Atalay, M. A. & Keles, I. Antifungal activity of olive oil and ozonated olive oil against Candida spp. and Saprochaete spp.. Ozone Sci. Eng. 39, 462–470 (2017).

    CAS 
    Article 

    Google Scholar 

  • 12.

    Cullen, P. J. et al. Ozone processing for food preservation: An overview on fruit juice treatments. Ozone Sci. Eng. 32, 166–179 (2010).

    CAS 
    Article 

    Google Scholar 

  • 13.

    FDA. Secondary direct food additives permitted in food for human consumption. Fed. Reg. 66(123), 33829–33830 (2001).

    Google Scholar 

  • 14.

    Guzel-Seydim, Z. B., Greene, A. K. & Seydim, A. C. Use of ozone in the food industry. LWT Food Sci. Technol. 37(4), 453–460 (2004).

    CAS 
    Article 

    Google Scholar 

  • 15.

    Karaca, H. & Velioglu, Y. S. Ozone applications in fruit and vegetable processing. Food Rev. Int. 23(1), 91–106 (2007).

    CAS 
    Article 

    Google Scholar 

  • 16.

    Bialka, K. L. & Demirci, A. Decontamination of Escherichia coli O157: H7 and Salmonella enterica on blueberries using ozone and pulsed UV-light. J. Food Sci. 72(9), M391–M396 (2007).

    CAS 
    Article 

    Google Scholar 

  • 17.

    Naitoh, S., Okada, Y. & Sakai, T. Studies on utilization of ozone in food preservation: V. Changes microflora of ozone treated cereals, grains, peas, beans and spices during storage. J. Jap. Soc. Food Sci. Technol. 35, 69–77 (1988).

    Article 

    Google Scholar 

  • 18.

    Oztekin, S., Zorlugenc, B. & Zorlugenc, F. K. Effects of ozone treatment on microflora of dried figs. J. Food Eng. 75(3), 396–399 (2006).

    CAS 
    Article 

    Google Scholar 

  • 19.

    Najafi, M. B. H. & Khodaparast, M. H. H. Efficacy of ozone to reduce microbial populations in date fruits. Food Control 20(1), 27–30 (2009).

    Article 

    Google Scholar 

  • 20.

    Khadre, M. A., Yousef, A. E. & Kim, J. G. Microbiological aspects of ozone applications in food: A review. J. Food Sci. 66(9), 1242–1252 (2001).

    CAS 
    Article 

    Google Scholar 

  • 21.

    Loeb, B. L. Ozone: science & engineering: Thirty-three years and growing. Ozone Sci. Eng. 33(4), 329–342 (2011).

    CAS 
    Article 

    Google Scholar 

  • 22.

    Pandiselvam, R., Thirupathi, V. & Anandakumar, S. Reaction kinetics of ozone gas in paddy grains. J. Food Process. Eng. 38(6), 594–600 (2015).

    CAS 
    Article 

    Google Scholar 

  • 23.

    Rodoni, L., Casadei, N., Concellón, A., Chaves Alicia, A. R. & Vicente, A. R. Effect of short-term ozone treatments on tomato (Solanum lycopersicum L.) fruit quality and cell wall degradation. J. Agric. Food Chem. 58(1), 594–599 (2010).

    CAS 
    Article 

    Google Scholar 

  • 24.

    Choudhury, B. et al. Inactivation of Pseudomonas aeruginosa and Methicillin-resistant Staphylococcus aureus in an open water system with ozone generated by a compact, atmospheric DBD plasma reactor. Sci. Rep. 8, 17573 (2018).

    ADS 
    Article 

    Google Scholar 

  • 25.

    Sorlini, S. & Collivignarelli, C. Trihalomethane formation during chemical oxidation with chlorine, chlorine dioxide and ozone of ten Italian natural waters. Desalination 176, 103–111 (2005).

    CAS 
    Article 

    Google Scholar 

  • 26.

    Croué, J. P., Koudjonou, B. K. & Legube, B. Parameters affecting the formation of bromate ion during ozonation. Ozone Sci. Eng. 18, 1–18 (1996).

    Article 

    Google Scholar 

  • 27.

    Roy, S. & Portugal, S. Compact Portable Plasma Reactor. US patent 10,651,014 issued on May 12, 2020.

  • 28.

    Ashpis, D. E., Laun, M. C. & Griebeler, E. L. Progress toward accurate measurement of dielectric barrier discharge plasma actuator power. AIAA J. 55(7), 2254–2268 (2017).

    ADS 
    Article 

    Google Scholar 

  • 29.

    Durscher, R. & Roy, S. Evaluation of thrust measurement techniques for dielectric barrier discharge actuators. Exp. Fluids 53, 1165–1176 (2012).

    Article 

    Google Scholar 

  • 30.

    Mancinelli, R. L. & McKay, C. P. Effects of nitric oxide and nitrogen dioxide on bacterial growth. Appl. Environ. Microbiol. 46, 198–202 (1983).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 31.

    2B Technologies, Inc. Ozone Monitor Manual. 2B Technologies. https://twobtech.com/docs/manuals/model_202_revJ.pdf. (2001).

  • 32.

    Rodoni, L., Casadei, N., Concellón, A., Alicia, A. R. & Vicente, A. R. Effect of short-term ozone treatments on tomato (Solanum lycopersicum L.) fruit quality and cell wall degradation. J. Agric. Food Chem. 58(1), 594–599 (2010).

    CAS 
    Article 

    Google Scholar 

  • 33.

    Aguayo, E., Escalona, V. H. & Artés, F. Effect of cyclic exposure to ozone gas on physicochemical, sensorial and microbial quality of whole and sliced tomatoes. Postharvest. Biol. Technol. 39(2), 169–177 (2006).

    CAS 
    Article 

    Google Scholar 

  • Source link