Brewster, L. et al. Expansion and angiogenic potential of mesenchymal stem cells from patients with critical limb ischemia. J. Vasc. Surg. 65, 826-838.e821 (2017).
Google Scholar
Hirsch, A. T. et al. ACC/AHA 2005 practice guidelines for the management of patients with peripheral arterial disease (lower extremity, renal, mesenteric, and abdominal aortic) a collaborative report from the American Association for Vascular Surgery/Society for Vascular Surgery,* Society for Cardiovascular Angiography and Interventions, Society for Vascular Medicine and Biology, Society of Interventional Radiology, and the ACC/AHA Task Force on Practice Guidelines (writing committee to develop guidelines for the management of patients with peripheral arterial disease): Endorsed by the American Association of Cardiovascular and Pulmonary Rehabilitation; National Heart, Lung, and Blood Institute; Society for Vascular Nursing; TransAtlantic Inter-Society Consensus; and Vascular Disease Foundation. Circulation 113, e463–e654 (2006).
Google Scholar
Sampson, U. K. et al. Global and regional burden of aortic dissection and aneurysms: Mortality trends in 21 world regions, 1990 to 2010. Glob. Heart 9, 171-180.e110 (2014).
Google Scholar
Barshes, N. R. & Belkin, M. A framework for the evaluation of “value” and cost-effectiveness in the management of critical limb ischemia. J. Am. Coll. Surg. 213, 552-566.e555 (2011).
Google Scholar
Varu, V. N., Hogg, M. E. & Kibbe, M. R. Critical limb ischemia. J. Vasc. Surg. 51, 230–241 (2010).
Google Scholar
Yusoff, M. F. et al. Relationship between cell number and clinical outcomes of autologous bone-marrow mononuclear cell implantation in critical limb ischemia. Sci. Rep. 10, 1–8 (2020).
Weem, S. P., Teraa, M., De Borst, G., Verhaar, M. & Moll, F. Bone marrow derived cell therapy in critical limb ischemia: A meta-analysis of randomized placebo controlled trials. Eur. J. Vasc. Endovasc. Surg. 50, 775–783 (2015).
Google Scholar
Lawall, H., Bramlage, P. & Amann, B. Treatment of peripheral arterial disease using stem and progenitor cell therapy. J. Vasc. Surg. 53, 445–453 (2011).
Google Scholar
Powell, R. J. Update on clinical trials evaluating the effect of biologic therapy in patients with critical limb ischemia. J. Vasc. Surg. 56, 264–266 (2012).
Google Scholar
Zhu, H. et al. Transplantation of mesenchymal stem cells enhances angiogenesis after ischemic limb injury in mice. Biophys. J. 110, 141a (2016).
Google Scholar
Cortez-Toledo, E. et al. Enhancing retention of human bone marrow mesenchymal stem cells with prosurvival factors promotes angiogenesis in a mouse model of limb ischemia. Stem Cells Dev. 28, 114–119 (2019).
Google Scholar
Griffin, M. D., Ritter, T. & Mahon, B. P. Immunological aspects of allogeneic mesenchymal stem cell therapies. Hum. Gene Ther. 21, 1641–1655 (2010).
Google Scholar
Hu, G.-W. et al. Exosomes secreted by human-induced pluripotent stem cell-derived mesenchymal stem cells attenuate limb ischemia by promoting angiogenesis in mice. Stem Cell Res. Ther. 6, 10 (2015).
Google Scholar
Iwase, T. et al. Comparison of angiogenic potency between mesenchymal stem cells and mononuclear cells in a rat model of hindlimb ischemia. Cardiovasc. Res. 66, 543–551 (2005).
Google Scholar
Allakhverdi, Z. et al. Mast cell-activated bone marrow mesenchymal stromal cells regulate proliferation and lineage commitment of CD34+ progenitor cells. Front. Immunol. 4, 461 (2013).
Google Scholar
Nazari, M. et al. Mast cells promote proliferation and migration and inhibit differentiation of mesenchymal stem cells through PDGF. J. Mol. Cell. Cardiol. 94, 32–42 (2016).
Google Scholar
Hiromatsu, Y. & Toda, S. Mast cells and angiogenesis. Microsc. Res. Tech. 60, 64–69 (2003).
Google Scholar
Ribatti, D. A new role of mast cells in arteriogenesis. Microvasc. Res. 118, 57–60 (2018).
Google Scholar
Smadja, D. et al. Angiogenic potential of BM MSCs derived from patients with critical leg ischemia. Bone Marrow Transplant. 47, 997 (2012).
Google Scholar
Ribatti, D. & Tamma, R. The dual role of mast cells in tumor fate. Cancer Lett. 433, 252–258 (2018).
Google Scholar
Aguirre, A., Planell, J. & Engel, E. Dynamics of bone marrow-derived endothelial progenitor cell/mesenchymal stem cell interaction in co-culture and its implications in angiogenesis. Biochem. Biophys. Res. Commun. 400, 284–291 (2010).
Google Scholar
Cross, M. J. & Claesson-Welsh, L. FGF and VEGF function in angiogenesis: Signalling pathways, biological responses and therapeutic inhibition. Trends Pharmacol. Sci. 22, 201–207 (2001).
Google Scholar
Jalkanen, J., Hautero, O., Maksimow, M., Jalkanen, S. & Hakovirta, H. Correlation between increasing tissue ischemia and circulating levels of angiogenic growth factors in peripheral artery disease. Cytokine 110, 24–28 (2018).
Google Scholar
Nakamichi, M. et al. Basic fibroblast growth factor induces angiogenic properties of fibrocytes to stimulate vascular formation during wound healing. Am. J. Pathol. 186, 3203–3216 (2016).
Google Scholar
Khurana, R. & Simons, M. Insights from angiogenesis trials using fibroblast growth factor for advanced arteriosclerotic disease. Trends Cardiovasc. Med. 13, 116–122 (2003).
Google Scholar
Matsumoto, R. et al. Vascular endothelial growth factor-expressing mesenchymal stem cell transplantation for the treatment of acute myocardial infarction. Arterioscler. Thromb. Vasc. Biol. 25, 1168–1173 (2005).
Google Scholar
Rosellini, E., Cristallini, C., Barbani, N., Vozzi, G. & Giusti, P. Preparation and characterization of alginate/gelatin blend films for cardiac tissue engineering. J. Biomed. Mater. Res. Part A. 91, 447–453 (2009).
Google Scholar
Luo, Y., Lode, A., Akkineni, A. R. & Gelinsky, M. Concentrated gelatin/alginate composites for fabrication of predesigned scaffolds with a favorable cell response by 3D plotting. RSC Adv. 5, 43480–43488 (2015).
Google Scholar
Pan, T., Song, W., Cao, X. & Wang, Y. 3D bioplotting of gelatin/alginate scaffolds for tissue engineering: Influence of crosslinking degree and pore architecture on physicochemical properties. J. Mater. Sci. Technol. 32, 889–900 (2016).
Google Scholar
Qadura, M., Terenzi, D. C., Verma, S., Al-Omran, M. & Hess, D. A. Concise review: Cell therapy for critical limb ischemia: An integrated review of preclinical and clinical studies. Stem Cells 36, 161–171 (2018).
Google Scholar
Dinescu, S. et al. A 3D porous gelatin-alginate-based-IPN acts as an efficient promoter of chondrogenesis from human adipose-derived stem cells. Stem Cells Int. 2015(2015), 1–17 (2015).
Google Scholar
Sun, G. et al. Dextran hydrogel scaffolds enhance angiogenic responses and promote complete skin regeneration during burn wound healing. Proc. Natl. Acad. Sci. U. S. A. 108, 20976–20981 (2011).
Google Scholar
Hobo, K. et al. Therapeutic angiogenesis using tissue engineered human smooth muscle cell sheets. Arterioscler. Thromb. Vasc. Biol. 28, 637–643 (2008).
Google Scholar
Karimi, A. et al. Histological evidence for therapeutic induction of angiogenesis using mast cells and platelet-rich plasma within a bioengineered scaffold following Rat hindlimb ischemia. Cell J. (Yakhteh) 21, 391–400 (2020).
Amani, S. et al. Histomorphometric and immunohistochemical evaluation of angiogenesis in local ischemia by tissue engineering method in rat: Role of mast cells. Vet. Res. Forum 10(1), 23–30 (2019).
Meurer, S. K. et al. Isolation of mature (peritoneum-derived) mast cells and immature (bone marrow-derived) mast cell precursors from mice. PLoS One 11, e0158104 (2016).
Google Scholar
Norrby, K. Mast cells and angiogenesis. APMIS 110, 355–371 (2002).
Google Scholar
Ribatti, D. & Ranieri, G. Tryptase, a novel angiogenic factor stored in mast cell granules. Exp. Cell Res. 332, 157–162 (2015).
Google Scholar
de Souza Junior, D., Mazucato, V., Santana, A., Oliver, C. & Jamur, M. Mast cells interact with endothelial cells to accelerate in vitro angiogenesis. Int. J. Mol. Sci. 18, 2674 (2017).
Google Scholar
Jia, J. et al. Engineering alginate as bioink for bioprinting. Acta Biomater. 10, 4323–4331 (2014).
Google Scholar
Balakrishnan, B., Mohanty, M., Umashankar, P. & Jayakrishnan, A. Evaluation of an in situ forming hydrogel wound dressing based on oxidized alginate and gelatin. Biomaterials 26, 6335–6342 (2005).
Google Scholar
Meier, P. et al. The collateral circulation of the heart. BMC Med. 11, 143 (2013).
Google Scholar
Faber, J. E., Chilian, W. M., Deindl, E., van Royen, N. & Simons, M. A brief etymology of the collateral circulation. Arterioscler. Thromb. Vasc. Biol. 34, 1854–1859 (2014).
Google Scholar
Logsdon, A. F. et al. Role of microvascular disruption in brain damage from traumatic brain injury. Compr. Physiol. 5, 1147–1160 (2011).
Wei, L., Fraser, J. L., Lu, Z.-Y., Hu, X. & Yu, S. P. Transplantation of hypoxia preconditioned bone marrow mesenchymal stem cells enhances angiogenesis and neurogenesis after cerebral ischemia in rats. Neurobiol. Dis. 46, 635–645 (2012).
Google Scholar
Al-Khaldi, A., Al-Sabti, H., Galipeau, J. & Lachapelle, K. Therapeutic angiogenesis using autologous bone marrow stromal cells: Improved blood flow in a chronic limb ischemia model. Ann. Thorac. Surg. 75, 204–209 (2003).
Google Scholar
Wei, X. et al. Mesenchymal stem cells: A new trend for cell therapy. Acta Pharmacol. Sin. 34, 747–754 (2013).
Google Scholar
Le Blanc, K. & Mougiakakos, D. Multipotent mesenchymal stromal cells and the innate immune system. Nat. Rev. Immunol. 12, 383 (2012).
Google Scholar
King, A., Balaji, S., Keswani, S. G. & Crombleholme, T. M. The role of stem cells in wound angiogenesis. Adv. Wound Care 3, 614–625 (2014).
Google Scholar
Liu, X.-B., Wang, J.-A., Ji, X.-Y., Yu, S. P. & Wei, L. Preconditioning of bone marrow mesenchymal stem cells by prolyl hydroxylase inhibition enhances cell survival and angiogenesis in vitro and after transplantation into the ischemic heart of rats. Stem Cell Res. Ther. 5, 111 (2014).
Google Scholar
Bot, I. et al. Local mast cell activation promotes neovascularization. Cells 9, 701 (2020).
Google Scholar
Brown, J. M., Nemeth, K., Kushnir-Sukhov, N. M., Metcalfe, D. D. & Mezey, E. Bone marrow stromal cells inhibit mast cell function via a COX2-dependent mechanism. Clin. Exp. Allergy 41, 526–534 (2011).
Google Scholar
Admyre, C. et al. Exosomes with immune modulatory features are present in human breast milk. J. Immunol. 179, 1969–1978 (2007).
Google Scholar
Karaoz, E. et al. Characterization of mesenchymal stem cells from rat bone marrow: Ultrastructural properties, differentiation potential and immunophenotypic markers. Histochem. Cell Biol. 132, 533 (2009).
Google Scholar
Li, C. X. et al. MicroRNA-21 preserves the fibrotic mechanical memory of mesenchymal stem cells. Nat. Mater. 16, 379–389 (2017).
Google Scholar
Spath, C., Schlegel, F., Leontyev, S., Mohr, F. W. & Dhein, S. Inverse relationship between tumor proliferation markers and connexin expression in a malignant cardiac tumor originating from mesenchymal stem cell engineered tissue in a rat in vivo model. Front. Pharmacol. 4, 42 (2013).
Google Scholar
Zhang, L. & Chan, C. Isolation and enrichment of rat mesenchymal stem cells (MSCs) and separation of single-colony derived MSCs. J. Vis. Exp. 37, e1852 (2010).

