Preloader

Analysis of metabolic dynamics during drought stress in Arabidopsis plants

  • Lesk, C., Rowhani, P. & Ramankutty, N. Influence of extreme weather disasters on global crop production. Nature 529, 84–87 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Shukla, P. R. et al. Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems (UN’s Intergovernmental Panel on Climate Change (IPCC), 2019).

  • Urano, K. et al. Characterization of the ABA-regulated global responses to dehydration in Arabidopsis by metabolomics. Plant J. 57, 1065–1078 (2009).

    CAS 
    Article 

    Google Scholar 

  • Krasensky, J. & Jonak, C. Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J. Exp. Bot. 63, 1593–1608 (2012).

    CAS 
    Article 

    Google Scholar 

  • Dong, S. & Beckles, D. M. Dynamic changes in the starch-sugar interconversion within plant source and sink tissues promote a better abiotic stress response. J. Plant Physiol. 234–235, 80–93 (2019).

    Article 

    Google Scholar 

  • Slama, I., Abdelly, C., Bouchereau, A., Flowers, T. & Savouré, A. Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Ann. Bot. 115, 433–447 (2015).

    CAS 
    Article 

    Google Scholar 

  • Fàbregas, N. & Fernie, A. R. The metabolic response to drought. J. Exp. Bot. 70, 1077–1085 (2019).

    Article 

    Google Scholar 

  • Frolov, A. et al. Early responses of mature Arabidopsis thaliana plants to reduced water potential in the agar-based polyethylene glycol infusion drought model. J. Plant Physiol. 208, 70–83 (2017).

    CAS 
    Article 

    Google Scholar 

  • Kudo, M. et al. Double overexpression of DREB and PIF transcription factors improves drought stress tolerance and cell elongation in transgenic plants. Plant Biotechnol. J. 15, 458–471 (2017).

    CAS 
    Article 

    Google Scholar 

  • Nanjo, T. et al. Antisense suppression of proline degradation improves tolerance to freezing and salinity in Arabidopsis thaliana. FEBS Lett. 461, 205–210 (1999).

    CAS 
    Article 

    Google Scholar 

  • Ge, L.-F. et al. Overexpression of the trehalose-6-phosphate phosphatase gene OsTPP1 confers stress tolerance in rice and results in the activation of stress responsive genes. Planta 228, 191–201 (2008).

    CAS 
    Article 

    Google Scholar 

  • Himuro, Y. et al. Arabidopsis galactinol synthase AtGolS2 improves drought tolerance in the monocot model Brachypodium distachyon. J. Plant Physiol. 171, 1127–1131 (2014).

    CAS 
    Article 

    Google Scholar 

  • Nuccio, M. L. et al. Expression of trehalose-6-phosphate phosphatase in maize ears improves yield in well-watered and drought conditions. Nat. Biotechnol. 33, 862–869 (2015).

    CAS 
    Article 

    Google Scholar 

  • Claeys, H. & Inzé, D. The agony of choice: how plants balance growth and survival under water-limiting conditions. Plant Physiol. 162, 1768–1779 (2013).

    CAS 
    Article 

    Google Scholar 

  • Sah, S. K., Reddy, K. R. & Li, J. Abscisic Acid and Abiotic Stress Tolerance in Crop Plants. Front. Plant Sci. 7, 571 (2016).

    Article 

    Google Scholar 

  • Gupta, A., Rico-Medina, A. & Caño-Delgado, A. I. The physiology of plant responses to drought. Science 368, 266–269 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Divi, U. K. & Krishna, P. Brassinosteroid: a biotechnological target for enhancing crop yield and stress tolerance. N. Biotechnol. 26, 131–136 (2009).

    CAS 
    Article 

    Google Scholar 

  • Planas-Riverola, A. et al. Brassinosteroid signaling in plant development and adaptation to stress. Development 146, dev151894 (2019).

    Article 

    Google Scholar 

  • Nie, S. et al. Enhanced brassinosteroid signaling intensity via SlBRI1 overexpression negatively regulates drought resistance in a manner opposite of that via exogenous BR application in tomato. Plant Physiol. Biochem. 138, 36–47 (2019).

    CAS 
    Article 

    Google Scholar 

  • Ye, H. et al. RD26 mediates crosstalk between drought and brassinosteroid signaling pathways. Nat. Commun. 8, 14573 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Fàbregas, N. et al. Overexpression of the vascular brassinosteroid receptor BRL3 confers drought resistance without penalizing plant growth. Nat. Commun. 9 (2018).

  • Caño-Delgado, A. et al. BRL1 and BRL3 are novel brassinosteroid receptors that function in vascular differentiation in Arabidopsis. Development 131, 5341–51 (2004).

    Article 

    Google Scholar 

  • Fàbregas, N. et al. The brassinosteroid insensitive1-like3 signalosome complex regulates Arabidopsis root development. Plant Cell 25, 3377–88 (2013).

    Article 

    Google Scholar 

  • Pires, M. V. et al. The influence of alternative pathways of respiration that utilize branched-chain amino acids following water shortage in Arabidopsis. Plant. Cell Environ. 39, 1304–1319 (2016).

    CAS 
    Article 

    Google Scholar 

  • Georgii, E. et al. Relationships between drought, heat and air humidity responses revealed by transcriptome-metabolome co-analysis. BMC Plant Biol. 17, 120 (2017).

    Article 

    Google Scholar 

  • Meng, L. et al. Comparative proteomics and metabolomics of JAZ7-mediated drought tolerance in Arabidopsis. J. Proteomics 196, 81–91 (2019).

    CAS 
    Article 

    Google Scholar 

  • Todaka, D. et al. Temporal and spatial changes in gene expression, metabolite accumulation and phytohormone content in rice seedlings grown under drought stress conditions. Plant J. 90, 61–78 (2017).

    CAS 
    Article 

    Google Scholar 

  • Martignago, D., Rico-Medina, A., Blasco-Escámez, D., Fontanet-Manzaneque, J. B. & Caño-Delgado, A. I. Drought Resistance by Engineering Plant Tissue-Specific Responses. Frontiers in Plant Science 10, 1676 (2020).

    Article 

    Google Scholar 

  • Luedemann, A., Strassburg, K., Erban, A. & Kopka, J. TagFinder for the quantitative analysis of gas chromatography—mass spectrometry (GC-MS)-based metabolite profiling experiments. Bioinformatics 24, 732–737 (2008).

    CAS 
    Article 

    Google Scholar 

  • Fàbregas, N. et al. Overexpression of the vascular brassinosteroid receptor BRL3 confers drought resistance without penalizing plant growth. MetaboLights https://identifiers.org/metabolights:MTBLS2289 (2021).

  • Kopka, J. et al. GMD@CSB.DB: the Golm Metabolome Database. Bioinformatics 21, 1635–1638 (2005).

    CAS 
    Article 

    Google Scholar 

  • Conesa, A., Nueda, M. J., Ferrer, A. & Talon, M. maSigPro: a method to identify significantly differential expression profiles in time-course microarray experiments. Bioinformatics 22, 1096–1102 (2006).

    CAS 
    Article 

    Google Scholar 

  • Chen, L., Liu, R., Liu, Z.-P., Li, M. & Aihara, K. Detecting early-warning signals for sudden deterioration of complex diseases by dynamical network biomarkers. Sci. Rep. 2, 342 (2012).

    Article 

    Google Scholar 

  • Kim, D., Paggi, J. M., Park, C., Bennett, C. & Salzberg, S. L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 37, 907–915 (2019).

    CAS 
    Article 

    Google Scholar 

  • Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).

    CAS 
    Article 

    Google Scholar 

  • Lozano-Elena, F., Fàbregas, N. & Caño-Delgado, A. Transcriptomic study of Arabidopsis roots overexpressing the brassinosteroid receptor BRL3, in control conditions and under severe drought. Gene Expression Omnibus https://identifiers.org/geo:GSE119382 (2018).

  • Tuberosa, R. & Salvi, S. Genomics-based approaches to improve drought tolerance of crops. Trends Plant Sci. 11, 405–412 (2006).

    CAS 
    Article 

    Google Scholar 

  • Fernie, A. R. et al. Recommendations for Reporting Metabolite Data. Plant Cell 23, 2477 LP–2482 (2011).

    Article 

    Google Scholar 

  • ElSayed, A. I., Rafudeen, M. S. & Golldack, D. Physiological aspects of raffinose family oligosaccharides in plants: protection against abiotic stress. Plant Biol. (Stuttg). 16, 1–8 (2014).

    CAS 
    Article 

    Google Scholar 

  • Jahagirdar, S. & Saccenti, E. Evaluation of Single Sample Network Inference Methods for Metabolomics-Based Systems Medicine. J. Proteome Res. 20, 932–949 (2021).

    CAS 
    Article 

    Google Scholar 

  • Garcia-Alcalde, F., Garcia-Lopez, F., Dopazo, J. & Conesa, A. Paintomics: a web based tool for the joint visualization of transcriptomics and metabolomics data. Bioinformatics 27, 137–139 (2011).

    CAS 
    Article 

    Google Scholar 

  • Tarazona, S. et al. Data quality aware analysis of differential expression in RNA-seq with NOISeq R/Bioc package. Nucleic Acids Res. 43, e140 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Source link