Preloader

An integrated in vivo/in vitro framework to enhance cell-free biosynthesis with metabolically rewired yeast extracts

  • 1.

    Legras, J. L. et al. Adaptation of S. cerevisiae to fermented food environments reveals remarkable genome plasticity and the footprints of domestication. Mol. Biol. Evol. 35, 1712–1727 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 2.

    Nielsen, J. & Keasling, J. D. Engineering cellular metabolism. Cell 164, 1185–1197 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 3.

    Ekas, H., Deaner, M. & Alper, H. S. Recent advancements in fungal-derived fuel and chemical production and commercialization. Curr. Opin. Biotechnol. 57, 1–9 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 4.

    Ostergaard, S., Olsson, L. & Nielsen, J. Metabolic engineering of Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 64, 34–50 (2000).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 5.

    Nevoigt, E. Progress in metabolic engineering of Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 72, 379–412 (2008).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 6.

    Hong, K. K. & Nielsen, J. Metabolic engineering of Saccharomyces cerevisiae: a key cell factory platform for future biorefineries. Cell Mol. Life Sci. 69, 2671–2690 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 7.

    Nielsen, J. & Jewett, M. C. Impact of systems biology on metabolic engineering of Saccharomyces cerevisiae. FEMS Yeast Res. 8, 122–131 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 8.

    Lian, J., Mishra, S. & Zhao, H. Recent advances in metabolic engineering of Saccharomyces cerevisiae: New tools and their applications. Metab. Eng. 50, 85–108 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 9.

    Schadeweg, V. & Boles, E. Increasing n-butanol production with Saccharomyces cerevisiae by optimizing acetyl-CoA synthesis, NADH levels and trans-2-enoyl-CoA reductase expression. Biotechnol. Biofuels 9, 257 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 10.

    Li, M., Schneider, K., Kristensen, M., Borodina, I. & Nielsen, J. Engineering yeast for high-level production of stilbenoid antioxidants. Sci. Rep. 6, 36827 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 11.

    Ji, R. Y. et al. Metabolic engineering of yeast for the production of 3-Hydroxypropionic acid. Front. Microbiol. 9, 2185 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 12.

    Paddon, C. J. & Keasling, J. D. Semi-synthetic artemisinin: a model for the use of synthetic biology in pharmaceutical development. Nat. Rev. Microbiol. 12, 355–367 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 13.

    Galanie, S., Thodey, K., Trenchard, I. J., Interrante, M. F. & Smolke, C. D. Complete biosynthesis of opioids in yeast. Science 349, 1095–1100 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 14.

    Milne, N. et al. Metabolic engineering of Saccharomyces cerevisiae for the de novo production of psilocybin and related tryptamine derivatives. Metab. Eng. 60, 25–36 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 15.

    Pyne, M. E. et al. A yeast platform for high-level synthesis of tetrahydroisoquinoline alkaloids. Nat. Commun. 11, 3337 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 16.

    Srinivasan, P. & Smolke, C. D. Biosynthesis of medicinal tropane alkaloids in yeast. Nature 585, 614–619 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 17.

    Tyo, K. E., Alper, H. S. & Stephanopoulos, G. N. Expanding the metabolic engineering toolbox: more options to engineer cells. Trends Biotechnol. 25, 132–137 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 18.

    Wu, G. et al. Metabolic burden: cornerstones in synthetic biology and metabolic engineering applications. Trends Biotechnol. 34, 652–664 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 19.

    Nirenberg, M. & Matthaei, J. The dependence of cell-free protein synthesis in E. Coli upon naturally ocurring or synthetic polyribonucleotides. PNAS 47, 1588–1602 (1961).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 20.

    Iizuka, N., Najita, L., Franzusoff, A. & Sarnow, P. Cap-dependent and cap-independent translation by internal initiation of mRNAs in cell extracts prepared from Saccharomyces cerevisiae. Mol. Cell. Biol. 14, 7322–7330 (1994).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 21.

    Gasior, E., Herrera, S. F., Sadnik, I., McLaughlin, C. S. & Moldave, K. The preparation and characterization of a cell-free system from saccharomyces cerevisiae that translates natural messenger ribonucleic acid. J. Biol. Chem. 254, 3965–3969 (1979).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 22.

    Buchner, E. Alkoholische gährung ohne hefezellen. Ber. der Dtsch. chemischen Ges. 30, 117–124 (1897).

    CAS 
    Article 

    Google Scholar 

  • 23.

    Kohler, R. Reception of eduard buchner’s discovery of cell-free fermentation. J. Hist. Biol. 5, 327–353 (1972).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 24.

    Silverman, A. D., Karim, A. S. & Jewett, M. C. Cell-free gene expression: an expanded repertoire of applications. Nat. Rev. Genet. 21, 151–170 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 25.

    Hodgman, C. E. & Jewett, M. C. Cell-free synthetic biology: thinking outside the cell. Metab. Eng. 14, 261–269 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 26.

    Hershewe, J., Kightlinger, W. & Jewett, M. C. Cell-free systems for accelerating glycoprotein expression and biomanufacturing. J. Ind. Microbiol. Biotechnol. 47, 977–991 (2020).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 27.

    Swartz, J. R. Expanding biological applications using cell-free metabolic engineering: an overview. Metab. Eng. 50, 156–172 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 28.

    Dudley, Q. M., Karim, A. S. & Jewett, M. C. Cell-free metabolic engineering: biomanufacturing beyond the cell. Biotechnol. J. 10, 69–82 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 29.

    Lim, H. J. & Kim, D. M. Cell-free metabolic engineering: recent developments and future prospects. Methods Protoc. https://doi.org/10.3390/mps2020033 (2019).

  • 30.

    Bogart, J. W. et al. Cell-free exploration of the natural product chemical space. Chembiochem. https://doi.org/10.1002/cbic.202000452 (2020).

  • 31.

    Rasor, B. J. et al. Toward sustainable, cell-free biomanufacturing. Current Opin Biotechnol. 69, 136-144 (2021).

  • 32.

    Bowie, J. U. et al. Synthetic biochemistry: the bio-inspired cell-free approach to commodity chemical production. Trends Biotechnol. https://doi.org/10.1016/j.tibtech.2019.12.024 (2020).

  • 33.

    Karim, A. S. et al. In vitro prototyping and rapid optimization of biosynthetic enzymes for cell design. Nat. Chem. Biol. 16, 912–919 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 34.

    Dudley, Q. M., Nash, C. J. & Jewett, M. C. Cell-free biosynthesis of limonene using enzyme-enriched Escherichia coli lysates. Synth. Biol. 4, ysz003 (2019).

    CAS 
    Article 

    Google Scholar 

  • 35.

    Kay, J. E. & Jewett, M. C. A cell-free system for production of 2,3-butanediol is robust to growth-toxic compounds. Metab. Eng. Commun. https://doi.org/10.1016/j.mec.2019.e00114 (2020).

  • 36.

    Kay, J. E. & Jewett, M. C. Lysate of engineered Escherichia coli supports high-level conversion of glucose to 2,3-butanediol. Metab. Eng. 32, 133–142 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 37.

    Sherkhanov, S. et al. Isobutanol production freed from biological limits using synthetic biochemistry. Nat. Commun. 11, 4292 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 38.

    Kelwick, R. et al. Cell-free prototyping strategies for enhancing the sustainable production of polyhydroxyalkanoates bioplastics. Synthetic Biol. https://doi.org/10.1093/synbio/ysy016 (2018).

  • 39.

    Grubbe, W. S., Rasor, B. J., Krüger, A., Jewett, M. C. & Karim, A. S. Cell-free biosynthesis of styrene at high titers. Metab. Eng. 61, 89–95 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 40.

    Korman, T. P., Opgenorth, P. H. & Bowie, J. U. A synthetic biochemistry platform for cell free production of monoterpenes from glucose. Nat. Commun. 8, 15526 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 41.

    Valliere, M. A. et al. A cell-free platform for the prenylation of natural products and application to cannabinoid production. Nat. Commun. 10, 565 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 42.

    Karim, A. S., Rasor, B. J. & Jewett, M. C. Enhancing control of cell-free metabolism through pH modulation. Synthetic Biol. https://doi.org/10.1093/synbio/ysz027 (2019).

  • 43.

    Rollin, J. A., Tam, T. K. & Zhang, Y. H. P. New biotechnology paradigm: cell-free biosystems for biomanufacturing. Green Chem. https://doi.org/10.1039/c3gc40625c (2013).

  • 44.

    Li, X. et al. Overproduction of fatty acids in engineered Saccharomyces cerevisiae. Biotechnol. Bioeng. 111, 1841–1852 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 45.

    Cameron, D. C., Altaras, N. E., Hoffman, M. L. & Shaw, A. J. Metabolic engineering of propanediol pathways. Biotechnol. Prog. 14, 116–125 (1998).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 46.

    Khattak, W. A. et al. Yeast cell-free enzyme system for bio-ethanol production at elevated temperatures. Process Biochem. 49, 357–364 (2014).

    CAS 
    Article 

    Google Scholar 

  • 47.

    Karim, A. S. & Jewett, M. C. A cell-free framework for rapid biosynthetic pathway prototyping and enzyme discovery. Metab. Eng. 36, 116–126 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 48.

    Claassens, N. J., Burgener, S., Vogeli, B., Erb, T. J. & Bar-Even, A. A critical comparison of cellular and cell-free bioproduction systems. Curr. Opin. Biotechnol. 60, 221–229 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 49.

    Kim, S. J., Kim, J. W., Lee, Y. G., Park, Y. C. & Seo, J. H. Metabolic engineering of Saccharomyces cerevisiae for 2,3-butanediol production. Appl Microbiol. Biotechnol. 101, 2241–2250 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 50.

    Hakizimana, O., Matabaro, E. & Lee, B. H. The current strategies and parameters for the enhanced microbial production of 2,3-butanediol. Biotechnol. Rep. 25, e00397 (2020).

    Article 

    Google Scholar 

  • 51.

    Kim, S. & Hahn, J. S. Efficient production of 2,3-butanediol in Saccharomyces cerevisiae by eliminating ethanol and glycerol production and redox rebalancing. Metab. Eng. 31, 94–101 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 52.

    Deaner, M., Holzman, A. & Alper, H. S. Modular Ligation extension of guide RNA Operons (LEGO) for multiplexed dCas9 regulation of metabolic pathways in saccharomyces cerevisiae. Biotechnol J. https://doi.org/10.1002/biot.201700582 (2018).

  • 53.

    Zhang, L. et al. An artificial synthetic pathway for acetoin, 2,3-butanediol, and 2-butanol production from ethanol using cell free multi-enzyme catalysis. Green. Chem. 20, 230–242 (2018).

    CAS 
    Article 

    Google Scholar 

  • 54.

    Choudhury, A., Hodgman, C. E., Anderson, M. J. & Jewett, M. C. Evaluating fermentation effects on cell growth and crude extract metabolic activity for improved yeast cell-free protein synthesis. Biochem. Eng. J. 91, 140–148 (2014).

    CAS 
    Article 

    Google Scholar 

  • 55.

    Hodgman, C. E. & Jewett, M. C. Optimized extract preparation methods and reaction conditions for improved yeast cell-free protein synthesis. Biotechnol. Bioeng. 110, 2643–2654 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 56.

    Anderson, M. J., Stark, J. C., Hodgman, C. E. & Jewett, M. C. Energizing eukaryotic cell-free protein synthesis with glucose metabolism. FEBS Lett. 589, 1723–1727 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 57.

    Contreras-Llano, L. E. et al. Holistic engineering of cell-free systems through proteome-reprogramming synthetic circuits. Nat. Commun. 11, 3138 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 58.

    Schoborg, J. A., Clark, L. G., Choudhury, A., Hodgman, C. E. & Jewett, M. C. Yeast knockout library allows for efficient testing of genomic mutations for cell-free protein synthesis. Synth. Syst. Biotechnol. 1, 2–6 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 59.

    Cole, S. D., Miklos, A. E., Chiao, A. C., Sun, Z. Z. & Lux, M. W. Methodologies for preparation of prokaryotic extracts for cell-free expression systems. Synth. Syst. Biotechnol. 5, 252–267 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 60.

    Dopp, J. L. & Reuel, N. F. Simple, functional, inexpensive cell extract for in vitro prototyping of proteins with disulfide bonds. Biochem. Eng. J. https://doi.org/10.1016/j.bej.2020.107790 (2020).

  • 61.

    Martin, R. W. et al. Cell-free protein synthesis from genomically recoded bacteria enables multisite incorporation of noncanonical amino acids. Nat. Commun. 9, 1203 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 62.

    Adachi, J. et al. Cell-free protein synthesis using S30 extracts from Escherichia coli RFzero strains for efficient incorporation of non-natural amino acids into proteins. Int. J. Mol. Sci. https://doi.org/10.3390/ijms20030492 (2019).

  • 63.

    Dudley, Q. M., Anderson, K. C. & Jewett, M. C. Cell-free mixing of Escherichia coli crude extracts to prototype and rationally engineer high-titer mevalonate synthesis. ACS Synth. Biol. 5, 1578–1588 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 64.

    Garcia, D. C. et al. A lysate proteome engineering strategy for enhancing cell-free metabolite production. Metab. Eng. Commun. 12, e00162 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 65.

    Qi, L. S. et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152, 1173–1183 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 66.

    Kwon, Y. C. & Jewett, M. C. High-throughput preparation methods of crude extract for robust cell-free protein synthesis. Sci. Rep. 5, 8663 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 67.

    Eriksson, P., Andre, L., Ansell, R., Blomberg, A. & Adler, L. Cloning and characterization of GPD2, a second gene encoding sn-glycerol 3-phosphate dehydrogenase (NAD +) in Saccharomyces cerevisiae, and its comparison with GPD1. Mol. Microbiol. 17, 95–107 (1995).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 68.

    Ng, C. Y., Jung, M. Y., Lee, J. & Oh, M. K. Production of 2,3-butanediol in Saccharomyces cerevisiae by in silico aided metabolic engineering. Microb Cell Fact https://doi.org/10.1186/1475-2859-11-68 (2012).

  • 69.

    Hubmann, G., Guillouet, S. & Nevoigt, E. Gpd1 and Gpd2 fine-tuning for sustainable reduction of glycerol formation in Saccharomyces cerevisiae. Appl Environ. Microbiol. 77, 5857–5867 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 70.

    Vemuri, G. N., Eiteman, M. A., McEwen, J. E., Olsson, L. & Nielsen, J. Increasing NADH oxidation reduces overflow metabolism in Saccharomyces cerevisiae. PNAS 104, 2402–2407 (2007).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 71.

    Steiger, M. G., Blumhoff, M. L., Mattanovich, D. & Sauer, M. Biochemistry of microbial itaconic acid production. Front. Microbiol. 4, 23 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 72.

    Blazeck, J. et al. Metabolic engineering of Saccharomyces cerevisiae for itaconic acid production. Appl Microbiol. Biotechnol. 98, 8155–8164 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 73.

    Tan, H. W., Abdul Aziz, A. R. & Aroua, M. K. Glycerol production and its applications as a raw material: a review. Renew. Sustain. Energy Rev. 27, 118–127 (2013).

    CAS 
    Article 

    Google Scholar 

  • 74.

    Deaner, M. & Alper, H. S. Systematic testing of enzyme perturbation sensitivities via graded dCas9 modulation in Saccharomyces cerevisiae. Metab. Eng. 40, 14–22 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 75.

    Gregorio, N. E., Levine, M. Z. & Oza, J. P. A user’s Guide to cell-free protein synthesis. Methods Protocols https://doi.org/10.3390/mps2010024 (2019).

  • 76.

    Liu, Z., Dong, H., Cui, Y., Cong, L. & Zhang, D. Application of different types of CRISPR/Cas-based systems in bacteria. Micro. Cell Fact. 19, 172 (2020).

    Article 

    Google Scholar 

  • 77.

    Raschmanova, H., Weninger, A., Glieder, A., Kovar, K. & Vogl, T. Implementing CRISPR-Cas technologies in conventional and non-conventional yeasts: current state and future prospects. Biotechnol. Adv. 36, 641–665 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 78.

    Yim, S. S. et al. Multiplex transcriptional characterizations across diverse bacterial species using cell-free systems. Mol. Syst. Biol. 15, e8875 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 79.

    Dudley, Q. M., Karim, A. S., Nash, C. J. & Jewett, M. C. In vitro prototyping of limonene biosynthesis using cell-free protein synthesis. Metab. Eng. 61, 251–260 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 80.

    Li, J., Zhang, L. & Liu, W. Cell-free synthetic biology for in vitro biosynthesis of pharmaceutical natural products. Synth. Syst. Biotechnol. 3, 83–89 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 81.

    Kelwick, R. J. R., Webb, A. J. & Freemont, P. S. Biological materials: the next frontier for cell-free synthetic biology. Front. Bioeng. Biotechnol. 8, 399 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 82.

    Bundy, B. C. et al. Cell-free biomanufacturing. Curr. Opin. Chem. Eng. 22, 177–183 (2018).

    Article 

    Google Scholar 

  • 83.

    Ma, J., Gu, Y., Marsafari, M. & Xu, P. Synthetic biology, systems biology, and metabolic engineering of Yarrowia lipolytica toward a sustainable biorefinery platform. J. Ind. Microbiol. Biotechnol. 47, 845–862 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 84.

    Aw, R. & Polizzi, K. M. Biosensor-assisted engineering of a high-yield Pichia pastoris cell-free protein synthesis platform. Biotechnol. Bioeng. 116, 656–666 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 85.

    Zhang, L., Liu, W. Q. & Li, J. Establishing a Eukaryotic Pichia pastoris cell-free protein synthesis system. Front. Bioeng. Biotechnol. 8, 536 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 86.

    Moore, S. J., Lai, H. E., Needham, H., Polizzi, K. M. & Freemont, P. S. Streptomyces venezuelae TX-TL – a next generation cell-free synthetic biology tool. Biotechnol. J. https://doi.org/10.1002/biot.201600678 (2017).

  • 87.

    Zhuang, L. et al. Total in vitro biosynthesis of the nonribosomal macrolactone peptide valinomycin. Metab. Eng. 60, 37–44 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 88.

    Moore, S. J. et al. A streptomyces venezuelae cell-free toolkit for synthetic biology. ACS Synth. Biol. 10, 402–411 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 89.

    Li, J., Wang, H., Kwon, Y. C. & Jewett, M. C. Establishing a high yielding streptomyces-based cell-free protein synthesis system. Biotechnol. Bioeng. 114, 1343–1353 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 90.

    Xu, H., Liu, W. Q. & Li, J. Translation related factors improve the productivity of a streptomyces-based cell-free protein synthesis system. ACS Synth. Biol. 9, 1221–1224 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 91.

    Ye, J. et al. Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinforma. 13, 134 (2012).

    CAS 
    Article 

    Google Scholar 

  • Source link