Preloader

An engineered prime editor with enhanced editing efficiency in plants

  • Gao, C. Genome engineering for crop improvement and future agriculture. Cell 184, 1621–1635 (2021).

    CAS 
    Article 

    Google Scholar 

  • Anzalone, A. V., Koblan, L. W. & Liu, D. R. Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors. Nat. Biotechnol. 38, 824–844 (2020).

    CAS 
    Article 

    Google Scholar 

  • Zhu, H., Li, C. & Gao, C. Applications of CRISPR–Cas in agriculture and plant biotechnology. Nat. Rev. Mol. Cell Biol. 21, 661–677 (2020).

    CAS 
    Article 

    Google Scholar 

  • Chen, K., Wang, Y., Zhang, R., Zhang, H. & Gao, C. CRISPR/Cas genome editing and precision plant breeding in agriculture. Annu. Rev. Plant. Biol. 70, 667–697 (2019).

    CAS 
    Article 

    Google Scholar 

  • Ran, Y., Liang, Z. & Gao, C. Current and future editing reagent delivery systems for plant genome editing. Sci. China Life Sci. 60, 490–505 (2017).

    CAS 
    Article 

    Google Scholar 

  • Anzalone, A. V. et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149–157 (2019).

    CAS 
    Article 

    Google Scholar 

  • Newby, G. A. & Liu, D. R. In vivo somatic cell base editing and prime editing. Mol. Ther. 29, 3107–3124 (2021).

    CAS 
    Article 

    Google Scholar 

  • Bosch, J. A., Birchak, G. & Perrimon, N. Precise genome engineering in Drosophila using prime editing. Proc. Natl Acad. Sci. USA 118, e2021996118 (2021).

    CAS 
    Article 

    Google Scholar 

  • Lin, Q. et al. Prime genome editing in rice and wheat. Nat. Biotechnol. 38, 582–585 (2020).

    CAS 
    Article 

    Google Scholar 

  • Petri, K. et al. CRISPR prime editing with ribonucleoprotein complexes in zebrafish and primary human cells. Nat. Biotechnol. 40, 189–193 (2022).

    CAS 
    Article 

    Google Scholar 

  • Qian, Y. et al. Efficient and precise generation of Tay–Sachs disease model in rabbit by prime editing system. Cell Discov. 7, 50 (2021).

    CAS 
    Article 

    Google Scholar 

  • Liu, Y. et al. Efficient generation of mouse models with the prime editing system. Cell Discov. 6, 27 (2020).

    CAS 
    Article 

    Google Scholar 

  • Jiang, Y. Y. et al. Prime editing efficiently generates W542L and S621I double mutations in two ALS genes in maize. Genome Biol. 21, 257 (2020).

    CAS 
    Article 

    Google Scholar 

  • Lin, Q. et al. High-efficiency prime editing with optimized, paired pegRNAs in plants. Nat. Biotechnol. 39, 923–927 (2021).

    CAS 
    Article 

    Google Scholar 

  • Liu, Y. et al. Enhancing prime editing by Csy4-mediated processing of pegRNA. Cell Res. 31, 1134–1136 (2021).

    CAS 
    Article 

    Google Scholar 

  • Nelson, J. W. et al. Engineered pegRNAs improve prime editing efficiency. Nat. Biotechnol. https://doi.org/10.1038/s41587-021-01039-7 (2021).

  • Das, D. & Georgiadis, M. M. The crystal structure of the monomeric reverse transcriptase from Moloney murine leukemia virus. Structure 12, 819–829 (2004).

    CAS 
    Article 

    Google Scholar 

  • Rein, A. Murine leukemia viruses: objects and organisms. Adv. Virol. 2011, 403419 (2011).

    Article 

    Google Scholar 

  • Lim, D. et al. Crystal structure of the moloney murine leukemia virus RNase H domain. J. Virol. 80, 8379–8389 (2006).

    CAS 
    Article 

    Google Scholar 

  • Gao, G., Orlova, M., Georgiadis, M. M., Hendrickson, W. A. & Goff, S. P. Conferring RNA polymerase activity to a DNA polymerase: a single residue in reverse transcriptase controls substrate selection. Proc. Natl Acad. Sci. USA 94, 407–411 (1997).

    CAS 
    Article 

    Google Scholar 

  • Boyer, P. L., Sarafianos, S. G., Arnold, E. & Hughes, S. H. Analysis of mutations at positions 115 and 116 in the dNTP binding site of HIV-1 reverse transcriptase. Proc. Natl Acad. Sci. USA 97, 3056–3061 (2000).

    CAS 
    Article 

    Google Scholar 

  • Katano, Y. et al. Generation of thermostable Moloney murine leukemia virus reverse transcriptase variants using site saturation mutagenesis library and cell-free protein expression system. Biosci. Biotechnol. Biochem. 81, 2339–2345 (2017).

    CAS 
    Article 

    Google Scholar 

  • Blain, S. W. & Goff, S. P. Effects on DNA synthesis and translocation caused by mutations in the RNase H domain of Moloney murine leukemia virus reverse transcriptase. J. Virol. 69, 4440–4452 (1995).

    CAS 
    Article 

    Google Scholar 

  • Herschhorn, A. & Hizi, A. Retroviral reverse transcriptases. Cell. Mol. Life Sci. 67, 2717–2747 (2010).

    CAS 
    Article 

    Google Scholar 

  • Katz, R. A. & Skalka, A. M. The retroviral enzymes. Annu. Rev. Biochem. 163, 133–173 (1994).

    Article 

    Google Scholar 

  • Mougel, M., Houzet, L. & Darlix, J. L. When is it time for reverse transcription to start and go? Retrovirology 6, 24 (2009).

    Article 

    Google Scholar 

  • Cannon, K., Qin, L., Schumann, G. & Boeke, J. D. Moloney murine leukemia virus protease expressed in bacteria is enzymatically active. Arch. Virol 143, 381–388 (1998).

    CAS 
    Article 

    Google Scholar 

  • Walton, R. T. et al. Unconstrained genome targeting with near-PAMless engineered CRISPR–Cas9 variants. Science 368, 290–296 (2020).

    CAS 
    Article 

    Google Scholar 

  • Jin, S. et al. Genome-wide specificity of prime editors in plants. Nat. Biotechnol. 39, 1292–1299 (2021).

    CAS 
    Article 

    Google Scholar 

  • Zong, Y. et al. Efficient C-to-T base editing in plants using a fusion of nCas9 and human APOBEC3A. Nat. Biotechnol. 36, 950–953 (2018).

    CAS 
    Article 

    Google Scholar 

  • Richter, M. F. et al. Phage-assisted evolution of an adenine base editor with improved Cas domain compatibility and activity. Nat. Biotechnol. 38, 883–891 (2020).

    CAS 
    Article 

    Google Scholar 

  • Powles, S. B. & Yu, Q. Evolution in action: plants resistant to herbicides. Annu. Rev. Plant Biol. 61, 317–347 (2010).

    CAS 
    Article 

    Google Scholar 

  • Chen, L. et al. Trp548Met mutation of acetolactate synthase in rice confers resistance to a broad spectrum of ALS-inhibiting herbicides. Crop J. 9, 750–758 (2021).

    Article 

    Google Scholar 

  • Zheng, C. et al. A flexible split prime editor using truncated reverse transcriptase improves dual-AAV delivery in mouse liver. Mol. Ther. https://doi.org/10.1016/j.ymthe.2022.01.005 (2022).

  • Song, M. et al. Generation of a more efficient prime editor 2 by addition of the Rad51 DNA-binding domain. Nat. Commun. 12, 5617 (2021).

    CAS 
    Article 

    Google Scholar 

  • Chen, P. J. et al. Enhanced prime editing systems by manipulating cellular determinants of editing outcomes. Cell 184, 5635–5652.e5629 (2021).

    CAS 
    Article 

    Google Scholar 

  • Anzalone, A. V. et al. Programmable deletion, replacement, integration and inversion of large DNA sequences with twin prime editing. Nat. Biotechnol. https://doi.org/10.1038/s41587-021-01133-w (2021).

  • Li, C. et al. Expanded base editing in rice and wheat using a Cas9–adenosine deaminase fusion. Genome Biol. 19, 59 (2018).

    Article 

    Google Scholar 

  • Shan, Q. et al. Targeted genome modification of crop plants using a CRISPR–Cas system. Nat. Biotechnol. 31, 686–688 (2013).

    CAS 
    Article 

    Google Scholar 

  • Shan, Q. et al. Rapid and efficient gene modification in rice and Brachypodium using TALENs. Mol. Plant 6, 1365–1368 (2013).

    CAS 
    Article 

    Google Scholar 

  • Bae, S., Park, J. & Kim, J. S. Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics 30, 1473–1475 (2014).

    CAS 
    Article 

    Google Scholar 

  • Jin, S. et al. Rationally designed APOBEC3B cytosine base editors with improved specificity. Mol. Cell 79, 728–740 (2020).

    CAS 
    Article 

    Google Scholar 

  • Source link