Preloader

An attempt to valorize the only black meat chicken breed of India by delineating superior functional attributes of its meat

  • Feehan, J., De Courten, M., Apostolopoulos, V. & De Courten, B. Nutritional interventions for COVID-19: A role for carnosine. Nutrients 13, 1463 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shakoor, H. et al. Immune-boosting role of vitamins D, C, E, zinc, selenium and omega-3 fatty acids: Could they help against COVID-19?. Maturitas 143, 1–9 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Shakoor, H. et al. Be well: A potential role for vitamin B in COVID-19. Maturitas 144, 108–111 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Abplanalp, W., Haberzettl, P., Bhatnagar, A., Conklin, D. J. & O’Toole, T. E. Carnosine supplementation mitigates the deleterious effects of particulate matter exposure in mice. J. Am. Heart Assoc. 8, e013041 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wu, G. Important roles of dietary taurine, creatine, carnosine, anserine and 4-hydroxyproline in human nutrition and health. Amino Acids 52(3), 329–360 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Derave, W., De Courten, B. & Baba, S. P. An update on carnosine and anserine research. Amino Acids 51, 1–4 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Alkhatib, A., Feng, W. H., Huang, Y. J., Kuo, C. H. & Hou, C. W. Anserine reverses exercise-induced oxidative stress and preserves cellular homeostasis in healthy men. Nutrients 12, 1146 (2020).

    CAS 
    PubMed Central 

    Google Scholar 

  • Kim, E. S. et al. LRP-1 functionalized polymersomes enhance the efficacy of carnosine in experimental stroke. Sci. Rep. 10, 699 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hou, J. et al. Effect of NaCl on oxidative stability and protein properties of oil bodies from different oil crops. Lebensmittel-Wissenschaft Technol. 113, 108263 (2019).

    CAS 

    Google Scholar 

  • Peiretti, P. G. et al. Determination of carnosine, anserine, homocarnosine, pentosidine and thiobarbituric acid reactive substances contents in meat from different animal species. Food Chem. 126, 1939–1947 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Nguyen, T. H. T. et al. Meat quality traits of Vietnamese indigenous Noi chicken at 91 days old. Biotechnol. Anim. Husb. 36(2), 191–203 (2020).

    Google Scholar 

  • Serpen, A., Gokmen, V. & Fogliano, V. Total antioxidant capacities of raw and cooked meats. Meat Sci. 90, 60–65 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Lengkidworraphiphat, P., Wongpoomchai, R., Taya, S. & Jaturasitha, S. Effect of genotypes on macronutrients and antioxidant capacity of chicken breast, Asian Australas. J. Anim. Sci. 33(11), 1817–1823 (2020).

    CAS 

    Google Scholar 

  • Rothan, H. A. et al. Carnosine exhibits significant antiviral activity against Dengue and Zika virus. J. Peptide Sci. 25, e3196 (2019).

    Google Scholar 

  • Lopachev, A. V., Kazanskaya, R. B., Khutorova, A. V. & Fedorova, T. N. An overview of the pathogenic mechanisms involved in severe cases of COVID-19 infection, and the proposal of salicyl-carnosine as a potential drug for its treatment. Eur. J. Pharmacol. 886, 173457 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jayasena, D. D. et al. Changes in endogenous bioactive compounds of Korean native chicken meat at different ages and during cooking. Poult. Sci. 93, 1842–1849 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Tian, Y. et al. Determination of carnosine in black-bone silky fowl (Gallus gallus domesticus Brisson) and common chicken by HPLC. Eur. Food Res. Technol. 226(1), 311–314 (2007).

    CAS 

    Google Scholar 

  • Kojima, S., Saegusa, H. & Sakata, M. Histidine-containing dipeptide concentration and antioxidant effects of meat extracts from Silky fowl: Comparison with meat-type chicken breast and thigh meats. Food Sci. Technol. Res. 20, 621–628 (2014).

    CAS 

    Google Scholar 

  • Haunshi, S. & Prince, L. L. L. Kadaknath: A popular native chicken breed of India with unique black colour characteristics. Worlds Poult. Sci. J. https://doi.org/10.1080/00439339.2021.1897918 (2021).

    Article 

    Google Scholar 

  • Mohan, J., Sastry, K. V. H., Moudgal, R. P. & Tyagi, J. S. Performance profile of Kadakanath desi hens under normal rearing system. Indian J. Poultry Sci. 43(3), 379–381 (2008).

    Google Scholar 

  • Singh, V. P. & Pathak, V. Physico-chemical, colour and textural characteristics of Cobb-400, Vanajara, Aseel and Kadaknath meat. Int. J. Livestock Res. 7(11), 98–106 (2017).

    Google Scholar 

  • Haunshi, S. & Prince, L. L. L. Kadaknath: a popular native chicken breed of India with unique black colour characteristics. World’s Poultry Sci. J. 77, 427–440 (2021).

    Google Scholar 

  • FAO. The state of food and agriculture: Climate change, agriculture, and food security. Published by the Food and Agriculture Organization of the United Nations, Rome. ISBN 978-92-5-109374-0 http://www.fao.org/3/a-i6030e.pdf (2016).

  • Pal, S., Prakash, B., Kumar, A. & Singh, Y. Review on backyard poultry farming: Resource utilization for better livelihood of the rural population. Int. J. Curr. Microbiol. Appl. Sci. 9(5), 2361–2371 (2020).

    CAS 

    Google Scholar 

  • Dyubele, N. L., Muchenje, V., Nkukwana, T. T. & Chimonyo, M. Consumer sensory characteristics of broiler and indigenous chicken meat: A South African example. Food Qual. Prefer. 21(7), 815–819 (2010).

    Google Scholar 

  • Maikhunthod, B. & Intarapichet, K. O. Heat and ultrafiltration extraction of broiler meat carnosine and its antioxidant activity. Meat Sci. 71(2), 364–374 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • Mori, M., Mizuno, D., Konoha-Mizuno, K., Sadakane, Y. & Kawahara, M. Quantitative analysis of carnosine and anserine in foods by performing high-performance liquid chromatograph. Biomed. Res. Trace Elem. 26(3), 147–152 (2015).

    CAS 

    Google Scholar 

  • Jung, S. et al. Carnosine, anserine, creatine, and inosine 5′-monophosphate contents in breast and thigh meats from 5 lines of Korean native chicken. Poult. Sci. 92(12), 3275–3282 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Abe, H. & Okuma, E. Discrimination of meat species in processed meat products based on the ratio of histidine dipeptides. Nippon Shokuhin Kagaku Kogaku Kaishi 42, 827–834 (1995).

    CAS 

    Google Scholar 

  • Barbaresi, S., Maertens, L., Claeys, E., Deravea, W. & Smetc, S. D. Differences in muscle histidine-containing dipeptides in broilers. J. Sci. Food Agric. 99, 5680–5686 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Jaturasitha, S., Srikanchai, T., Kreuzer, M. & Wicke, M. Differences in carcass and meat characteristics between chicken indigenous to northern Thailand (black-boned and Thai native) and imported extensive breeds. Poult. Sci. 87, 160–169 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • Aristoy, M. C., Mora, L. & Toldra, F. Histidine-containing dipeptides: Properties and occurrence in foods. Encycl. Food Health. 2, 395–400 (2016).

    Google Scholar 

  • Ali, M. et al. Comparison of functional compounds and micronutrients of chicken breast meat by breeds. Food Sci. Anim. Resour. 39(4), 632–642 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wyss, M. & Kaddurah-Daouk, R. Creatine and creatinine metabolism. Physiol. Rev. 80, 1107–1213 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • Mora, L., Hernandez-Cazares, A. S., Sentandreu, M. A. & Toldra, F. Creatine and creatinine evolution during the processing of dry-cured ham. Meat Sci. 84, 384–389 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Boldyrev, A. A., Aldini, G. & Derave, W. Physiology and pathophysiology of carnosine. Physiol. Rev. 93, 1803–1845 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Dunnett, M., Harris, R. C., Soliman, M. Z. & Suwar, A. A. Carnosine, anserine and taurine contents in individual fibers from the middle gluteal muscle of the camel. Res. Vet. Sci. 62, 213–216 (1997).

    CAS 
    PubMed 

    Google Scholar 

  • Dunnett, M. & Harris, R. C. Carnosine & taurine contents of different fiber types in the middle gluteal muscle of the thoroughbred horse. Equine Vet. J. 18, 214–217 (1995).

    Google Scholar 

  • Everaert, I., De Naeyer, H., Taes, Y. & Derave, W. Gene expression of carnosine-related enzymes and transporters in skeletal muscle. Eur. J. Appl. Physiol. 113(5), 1169–1179 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Artioli, G. G., Sale, C. & Jones, R. J. Carnosine in health and disease. Eur. J. Sport Sci. 19(1), 30–39 (2018).

    PubMed 

    Google Scholar 

  • D’Astous-Page, J. et al. Carnosine content in the porcine longissimus thoracis muscle and its association with meat quality attributes and carnosine-related gene expression. Meat Sci. 124, 84–94 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Blancquaert, L. et al. Effects of histidine and β-alanine supplementation on human muscle carnosine storage. Med. Sci. Sports Exerc. 49(3), 602–609 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Qi, B. et al. Effect of dietary β-alanine supplementation on growth performance, meat quality, carnosine content, and gene expression of carnosine-related enzymes in broilers. Poult. Sci. 97(4), 1220–1228 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Thwaites, D. T. & Anderson, C. M. H. The SLC36 family of proton-coupled amino acid transporters and their potential role in drug transport. Br. J. Pharmacol. 164(7), 1802–1816 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lenney, J. F., Peppers, S. C., Kucera, C. M. & Sjaastad, O. Homocarnosinosis: lack of serum carnosinase is the defect probably responsible for elevated brain and CSF homocarnosine. Clin. Chim. Acta 132, 157–165 (1983).

    CAS 
    PubMed 

    Google Scholar 

  • Teufel, M. et al. Sequence identification and characterization of human carnosinase and a closely related non-specific dipeptidase. J. Biol. Chem. 278(8), 6521–6531 (2003).

    CAS 
    PubMed 

    Google Scholar 

  • Li, D. et al. Breeding history and candidate genes responsible for black skin of Xichuan blackbone chicken. BMC Genom. 21, 511 (2020).

    Google Scholar 

  • Bibi Sadeer, N., Montesano, D., Albrizio, S., Zengin, G. & Mahomoodally, M. F. The versatility of antioxidant assays in food science and safety- chemistry, applications, strengths, and limitations. Antioxidants 9(8), 709 (2020).

    PubMed Central 

    Google Scholar 

  • Martinello, M. & Mutinelli, F. Antioxidant activity in bee products: A review. Antioxidants 10(1), 71 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sehrawat, R. et al. First report on better functional property of black chicken meat from India. Indian J. Anim. Res. 55(6), 727–733 (2021).

    Google Scholar 

  • Liu, M. et al. Optimization of mycelia selenium polysaccharide extraction from Agrocybe cylindracea SL-02 and assessment of their antioxidant and anti-ageing activities. PLoS ONE 11(8), e0160799 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Çakmakçi, S. et al. Antioxidant capacity and functionality of oleaster (E laeagnus angustifolia L.) flour and crust in a new kind of fruity ice cream. Int. J. Food Sci. Technol. 50(2), 472–481 (2015).

    Google Scholar 

  • Sadowska-Bartosz, I. & Bartosz, G. Prevention of protein glycation by natural compounds. Molecules 20, 3309–3334 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Uribarri, J. et al. Dietary advanced glycation end products and their role in health and disease. Adv. Nutr. 6(4), 461–473 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Starowicz, M. & Zielinski, H. inhibition of advanced glycation end-product formation by high antioxidant-leveled spices commonly used in European cuisine. Antioxidants 8(4), 100 (2019).

    CAS 
    PubMed Central 

    Google Scholar 

  • Aydin, A. F. et al. Carnosine decreased oxidation and glycation products in serum and liver of high-fat diet and low-dose streptozotocin-induced diabetic rats. Int. J. Exp. Pathol. 98, 278–288 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yilmaz, Z. et al. The effect of carnosine on methylglyoxal-induced oxidative stress in rats. J. Metab. Dis. 123, 192–198 (2017).

    CAS 

    Google Scholar 

  • Weigand, T. et al. Carnosine catalyzes the formation of the oligo/polymeric products of methylglyoxal. Cell J. Physiol. Biochem. 46, 713–726 (2018).

    CAS 

    Google Scholar 

  • Pepper, E. D., Farrell, M. J., Nord, G. & Finkel, E. Antiglycation effects of carnosine and other compounds on the long-term survival of Escherichia coli. Appl. Environ. Microbiol. 76(24), 7925–7930 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Harris, R. C. et al. Determinants of muscle carnosine content. Amino Acids 43, 5–12 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Avgerinos, K. I., Spyrou, N. & Bougioukas, K. I. Effects of creatine supplementation on cognitive function of healthy individuals. Exp. Gerontol. 108, 166–173 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mora, L., Sentandreu, M. A. & Toldra, F. Hydrophilic chromatographic determination of carnosine, anserine, balenine, creatine, and creatinine. J. Agric. Food Chem. 55(12), 4664–4669 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C (T)) Method. Methods 25, 402–408 (2001).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Abdelkader, H., Alany, R. G. & Pierscionek, B. Age-related cataract and drug therapy: Opportunities and challenges for topical antioxidant delivery to the lens. J. Pharm. Pharmacol. 67(4), 537–550 (2016).

    Google Scholar 

  • Source link