Feehan, J., De Courten, M., Apostolopoulos, V. & De Courten, B. Nutritional interventions for COVID-19: A role for carnosine. Nutrients 13, 1463 (2021).
Google Scholar
Shakoor, H. et al. Immune-boosting role of vitamins D, C, E, zinc, selenium and omega-3 fatty acids: Could they help against COVID-19?. Maturitas 143, 1–9 (2020).
Google Scholar
Shakoor, H. et al. Be well: A potential role for vitamin B in COVID-19. Maturitas 144, 108–111 (2021).
Google Scholar
Abplanalp, W., Haberzettl, P., Bhatnagar, A., Conklin, D. J. & O’Toole, T. E. Carnosine supplementation mitigates the deleterious effects of particulate matter exposure in mice. J. Am. Heart Assoc. 8, e013041 (2019).
Google Scholar
Wu, G. Important roles of dietary taurine, creatine, carnosine, anserine and 4-hydroxyproline in human nutrition and health. Amino Acids 52(3), 329–360 (2020).
Google Scholar
Derave, W., De Courten, B. & Baba, S. P. An update on carnosine and anserine research. Amino Acids 51, 1–4 (2019).
Google Scholar
Alkhatib, A., Feng, W. H., Huang, Y. J., Kuo, C. H. & Hou, C. W. Anserine reverses exercise-induced oxidative stress and preserves cellular homeostasis in healthy men. Nutrients 12, 1146 (2020).
Google Scholar
Kim, E. S. et al. LRP-1 functionalized polymersomes enhance the efficacy of carnosine in experimental stroke. Sci. Rep. 10, 699 (2020).
Google Scholar
Hou, J. et al. Effect of NaCl on oxidative stability and protein properties of oil bodies from different oil crops. Lebensmittel-Wissenschaft Technol. 113, 108263 (2019).
Google Scholar
Peiretti, P. G. et al. Determination of carnosine, anserine, homocarnosine, pentosidine and thiobarbituric acid reactive substances contents in meat from different animal species. Food Chem. 126, 1939–1947 (2011).
Google Scholar
Nguyen, T. H. T. et al. Meat quality traits of Vietnamese indigenous Noi chicken at 91 days old. Biotechnol. Anim. Husb. 36(2), 191–203 (2020).
Serpen, A., Gokmen, V. & Fogliano, V. Total antioxidant capacities of raw and cooked meats. Meat Sci. 90, 60–65 (2012).
Google Scholar
Lengkidworraphiphat, P., Wongpoomchai, R., Taya, S. & Jaturasitha, S. Effect of genotypes on macronutrients and antioxidant capacity of chicken breast, Asian Australas. J. Anim. Sci. 33(11), 1817–1823 (2020).
Google Scholar
Rothan, H. A. et al. Carnosine exhibits significant antiviral activity against Dengue and Zika virus. J. Peptide Sci. 25, e3196 (2019).
Lopachev, A. V., Kazanskaya, R. B., Khutorova, A. V. & Fedorova, T. N. An overview of the pathogenic mechanisms involved in severe cases of COVID-19 infection, and the proposal of salicyl-carnosine as a potential drug for its treatment. Eur. J. Pharmacol. 886, 173457 (2020).
Google Scholar
Jayasena, D. D. et al. Changes in endogenous bioactive compounds of Korean native chicken meat at different ages and during cooking. Poult. Sci. 93, 1842–1849 (2014).
Google Scholar
Tian, Y. et al. Determination of carnosine in black-bone silky fowl (Gallus gallus domesticus Brisson) and common chicken by HPLC. Eur. Food Res. Technol. 226(1), 311–314 (2007).
Google Scholar
Kojima, S., Saegusa, H. & Sakata, M. Histidine-containing dipeptide concentration and antioxidant effects of meat extracts from Silky fowl: Comparison with meat-type chicken breast and thigh meats. Food Sci. Technol. Res. 20, 621–628 (2014).
Google Scholar
Haunshi, S. & Prince, L. L. L. Kadaknath: A popular native chicken breed of India with unique black colour characteristics. Worlds Poult. Sci. J. https://doi.org/10.1080/00439339.2021.1897918 (2021).
Google Scholar
Mohan, J., Sastry, K. V. H., Moudgal, R. P. & Tyagi, J. S. Performance profile of Kadakanath desi hens under normal rearing system. Indian J. Poultry Sci. 43(3), 379–381 (2008).
Singh, V. P. & Pathak, V. Physico-chemical, colour and textural characteristics of Cobb-400, Vanajara, Aseel and Kadaknath meat. Int. J. Livestock Res. 7(11), 98–106 (2017).
Haunshi, S. & Prince, L. L. L. Kadaknath: a popular native chicken breed of India with unique black colour characteristics. World’s Poultry Sci. J. 77, 427–440 (2021).
FAO. The state of food and agriculture: Climate change, agriculture, and food security. Published by the Food and Agriculture Organization of the United Nations, Rome. ISBN 978-92-5-109374-0 http://www.fao.org/3/a-i6030e.pdf (2016).
Pal, S., Prakash, B., Kumar, A. & Singh, Y. Review on backyard poultry farming: Resource utilization for better livelihood of the rural population. Int. J. Curr. Microbiol. Appl. Sci. 9(5), 2361–2371 (2020).
Google Scholar
Dyubele, N. L., Muchenje, V., Nkukwana, T. T. & Chimonyo, M. Consumer sensory characteristics of broiler and indigenous chicken meat: A South African example. Food Qual. Prefer. 21(7), 815–819 (2010).
Maikhunthod, B. & Intarapichet, K. O. Heat and ultrafiltration extraction of broiler meat carnosine and its antioxidant activity. Meat Sci. 71(2), 364–374 (2005).
Google Scholar
Mori, M., Mizuno, D., Konoha-Mizuno, K., Sadakane, Y. & Kawahara, M. Quantitative analysis of carnosine and anserine in foods by performing high-performance liquid chromatograph. Biomed. Res. Trace Elem. 26(3), 147–152 (2015).
Google Scholar
Jung, S. et al. Carnosine, anserine, creatine, and inosine 5′-monophosphate contents in breast and thigh meats from 5 lines of Korean native chicken. Poult. Sci. 92(12), 3275–3282 (2013).
Google Scholar
Abe, H. & Okuma, E. Discrimination of meat species in processed meat products based on the ratio of histidine dipeptides. Nippon Shokuhin Kagaku Kogaku Kaishi 42, 827–834 (1995).
Google Scholar
Barbaresi, S., Maertens, L., Claeys, E., Deravea, W. & Smetc, S. D. Differences in muscle histidine-containing dipeptides in broilers. J. Sci. Food Agric. 99, 5680–5686 (2019).
Google Scholar
Jaturasitha, S., Srikanchai, T., Kreuzer, M. & Wicke, M. Differences in carcass and meat characteristics between chicken indigenous to northern Thailand (black-boned and Thai native) and imported extensive breeds. Poult. Sci. 87, 160–169 (2008).
Google Scholar
Aristoy, M. C., Mora, L. & Toldra, F. Histidine-containing dipeptides: Properties and occurrence in foods. Encycl. Food Health. 2, 395–400 (2016).
Ali, M. et al. Comparison of functional compounds and micronutrients of chicken breast meat by breeds. Food Sci. Anim. Resour. 39(4), 632–642 (2019).
Google Scholar
Wyss, M. & Kaddurah-Daouk, R. Creatine and creatinine metabolism. Physiol. Rev. 80, 1107–1213 (2000).
Google Scholar
Mora, L., Hernandez-Cazares, A. S., Sentandreu, M. A. & Toldra, F. Creatine and creatinine evolution during the processing of dry-cured ham. Meat Sci. 84, 384–389 (2010).
Google Scholar
Boldyrev, A. A., Aldini, G. & Derave, W. Physiology and pathophysiology of carnosine. Physiol. Rev. 93, 1803–1845 (2013).
Google Scholar
Dunnett, M., Harris, R. C., Soliman, M. Z. & Suwar, A. A. Carnosine, anserine and taurine contents in individual fibers from the middle gluteal muscle of the camel. Res. Vet. Sci. 62, 213–216 (1997).
Google Scholar
Dunnett, M. & Harris, R. C. Carnosine & taurine contents of different fiber types in the middle gluteal muscle of the thoroughbred horse. Equine Vet. J. 18, 214–217 (1995).
Everaert, I., De Naeyer, H., Taes, Y. & Derave, W. Gene expression of carnosine-related enzymes and transporters in skeletal muscle. Eur. J. Appl. Physiol. 113(5), 1169–1179 (2013).
Google Scholar
Artioli, G. G., Sale, C. & Jones, R. J. Carnosine in health and disease. Eur. J. Sport Sci. 19(1), 30–39 (2018).
Google Scholar
D’Astous-Page, J. et al. Carnosine content in the porcine longissimus thoracis muscle and its association with meat quality attributes and carnosine-related gene expression. Meat Sci. 124, 84–94 (2017).
Google Scholar
Blancquaert, L. et al. Effects of histidine and β-alanine supplementation on human muscle carnosine storage. Med. Sci. Sports Exerc. 49(3), 602–609 (2017).
Google Scholar
Qi, B. et al. Effect of dietary β-alanine supplementation on growth performance, meat quality, carnosine content, and gene expression of carnosine-related enzymes in broilers. Poult. Sci. 97(4), 1220–1228 (2018).
Google Scholar
Thwaites, D. T. & Anderson, C. M. H. The SLC36 family of proton-coupled amino acid transporters and their potential role in drug transport. Br. J. Pharmacol. 164(7), 1802–1816 (2011).
Google Scholar
Lenney, J. F., Peppers, S. C., Kucera, C. M. & Sjaastad, O. Homocarnosinosis: lack of serum carnosinase is the defect probably responsible for elevated brain and CSF homocarnosine. Clin. Chim. Acta 132, 157–165 (1983).
Google Scholar
Teufel, M. et al. Sequence identification and characterization of human carnosinase and a closely related non-specific dipeptidase. J. Biol. Chem. 278(8), 6521–6531 (2003).
Google Scholar
Li, D. et al. Breeding history and candidate genes responsible for black skin of Xichuan blackbone chicken. BMC Genom. 21, 511 (2020).
Bibi Sadeer, N., Montesano, D., Albrizio, S., Zengin, G. & Mahomoodally, M. F. The versatility of antioxidant assays in food science and safety- chemistry, applications, strengths, and limitations. Antioxidants 9(8), 709 (2020).
Google Scholar
Martinello, M. & Mutinelli, F. Antioxidant activity in bee products: A review. Antioxidants 10(1), 71 (2021).
Google Scholar
Sehrawat, R. et al. First report on better functional property of black chicken meat from India. Indian J. Anim. Res. 55(6), 727–733 (2021).
Liu, M. et al. Optimization of mycelia selenium polysaccharide extraction from Agrocybe cylindracea SL-02 and assessment of their antioxidant and anti-ageing activities. PLoS ONE 11(8), e0160799 (2016).
Google Scholar
Çakmakçi, S. et al. Antioxidant capacity and functionality of oleaster (E laeagnus angustifolia L.) flour and crust in a new kind of fruity ice cream. Int. J. Food Sci. Technol. 50(2), 472–481 (2015).
Sadowska-Bartosz, I. & Bartosz, G. Prevention of protein glycation by natural compounds. Molecules 20, 3309–3334 (2015).
Google Scholar
Uribarri, J. et al. Dietary advanced glycation end products and their role in health and disease. Adv. Nutr. 6(4), 461–473 (2015).
Google Scholar
Starowicz, M. & Zielinski, H. inhibition of advanced glycation end-product formation by high antioxidant-leveled spices commonly used in European cuisine. Antioxidants 8(4), 100 (2019).
Google Scholar
Aydin, A. F. et al. Carnosine decreased oxidation and glycation products in serum and liver of high-fat diet and low-dose streptozotocin-induced diabetic rats. Int. J. Exp. Pathol. 98, 278–288 (2017).
Google Scholar
Yilmaz, Z. et al. The effect of carnosine on methylglyoxal-induced oxidative stress in rats. J. Metab. Dis. 123, 192–198 (2017).
Google Scholar
Weigand, T. et al. Carnosine catalyzes the formation of the oligo/polymeric products of methylglyoxal. Cell J. Physiol. Biochem. 46, 713–726 (2018).
Google Scholar
Pepper, E. D., Farrell, M. J., Nord, G. & Finkel, E. Antiglycation effects of carnosine and other compounds on the long-term survival of Escherichia coli. Appl. Environ. Microbiol. 76(24), 7925–7930 (2010).
Google Scholar
Harris, R. C. et al. Determinants of muscle carnosine content. Amino Acids 43, 5–12 (2012).
Google Scholar
Avgerinos, K. I., Spyrou, N. & Bougioukas, K. I. Effects of creatine supplementation on cognitive function of healthy individuals. Exp. Gerontol. 108, 166–173 (2018).
Google Scholar
Mora, L., Sentandreu, M. A. & Toldra, F. Hydrophilic chromatographic determination of carnosine, anserine, balenine, creatine, and creatinine. J. Agric. Food Chem. 55(12), 4664–4669 (2007).
Google Scholar
Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C (T)) Method. Methods 25, 402–408 (2001).
Google Scholar
Abdelkader, H., Alany, R. G. & Pierscionek, B. Age-related cataract and drug therapy: Opportunities and challenges for topical antioxidant delivery to the lens. J. Pharm. Pharmacol. 67(4), 537–550 (2016).

