Preloader

Amplifying STING activation by cyclic dinucleotide–manganese particles for local and systemic cancer metalloimmunotherapy

  • 1.

    Couzin-Frankel, J. Cancer immunotherapy. Science 342, 1432–1433 (2013).

    CAS 
    Article 

    Google Scholar 

  • 2.

    Gubin, M. M. et al. Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature 515, 577–581 (2014).

    CAS 
    Article 

    Google Scholar 

  • 3.

    Lee, D. W. et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet 385, 517–528 (2015).

    CAS 
    Article 

    Google Scholar 

  • 4.

    Syn, N. L., Teng, M. W., Mok, T. S. & Soo, R. A. De-novo and acquired resistance to immune checkpoint targeting. Lancet Oncol. 18, e731–e741 (2017).

    Article 

    Google Scholar 

  • 5.

    Duan, Q., Zhang, H., Zheng, J. & Zhang, L. Turning cold into hot: firing up the tumor microenvironment. Trends Cancer 6, 605–618 (2020).

    CAS 
    Article 

    Google Scholar 

  • 6.

    Sun, L., Wu, J., Du, F., Chen, X. & Chen, Z. J. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 339, 786–791 (2013).

    CAS 
    Article 

    Google Scholar 

  • 7.

    Corrales, L. et al. Direct activation of STING in the tumor microenvironment leads to potent and systemic tumor regression and immunity. Cell Rep. 11, 1018–1030 (2015).

    CAS 
    Article 

    Google Scholar 

  • 8.

    Flood, B. A., Higgs, E. F., Li, S., Luke, J. J. & Gajewski, T. F. STING pathway agonism as a cancer therapeutic. Immunol. Rev. 290, 24–38 (2019).

    CAS 
    Article 

    Google Scholar 

  • 9.

    Shae, D. et al. Endosomolytic polymersomes increase the activity of cyclic dinucleotide STING agonists to enhance cancer immunotherapy. Nat. Nanotechnol. 14, 269–278 (2019).

    CAS 
    Article 

    Google Scholar 

  • 10.

    Schadt, L. et al. Cancer-cell-intrinsic cGAS expression mediates tumor immunogenicity. Cell Rep. 29, 1236–1248 (2019).

    CAS 
    Article 

    Google Scholar 

  • 11.

    Nicolai, C. J. et al. NK cells mediate clearance of CD8+ T cell-resistant tumors in response to STING agonists. Sci Immunol. https://doi.org/10.1126/sciimmunol.aaz2738 (2020).

  • 12.

    Harrington, K. J. et al. Preliminary results of the first-in-human study of MK-1454, an agonist of stimulator of interferon genes (STING), as monotherapy or in combination with Pembrolizumab (Pembro) in patients with advanced solid tumors or lymphomas. In The European Society for Medical Oncology (ESCO) 2018 Congress Abstract 5475 (2018).

  • 13.

    Meric-Bernstam, F. et al. Phase Ib study of MIW815 (ADU-S100) in combination with spartalizumab (PDR001) in patients (pts) with advanced/metastatic solid tumors or lymphomas. J. Clin. Oncol. 37, 2507 (2019).

    Article 

    Google Scholar 

  • 14.

    Ramanjulu, J. M. et al. Design of amidobenzimidazole STING receptor agonists with systemic activity. Nature 564, 439–443 (2018).

    CAS 
    Article 

    Google Scholar 

  • 15.

    Chin, E. N. et al. Antitumor activity of a systemic STING-activating non-nucleotide cGAMP mimetic. Science 369, 993–999 (2020).

    CAS 
    Article 

    Google Scholar 

  • 16.

    Pan, B. S. et al. An orally available non-nucleotide STING agonist with antitumor activity. Science https://doi.org/10.1126/science.aba6098 (2020)

  • 17.

    Gajewski, T. F. & Higgs, E. F. Immunotherapy with a sting. Science 369, 921–922 (2020).

    CAS 
    Article 

    Google Scholar 

  • 18.

    Koshy, S. T., Cheung, A. S., Gu, L., Graveline, A. R. & Mooney, D. J. Liposomal delivery enhances immune activation by STING agonists for cancer immunotherapy. Adv. Biosyst. https://doi.org/10.1002/adbi.201600013 (2017).

  • 19.

    Tan, Y. S. et al. Mitigating SOX2-potentiated immune escape of head and neck squamous cell carcinoma with a STING-inducing nanosatellite vaccine. Clin. Cancer Res. 24, 4242–4255 (2018).

    CAS 
    Article 

    Google Scholar 

  • 20.

    Liu, Y. et al. An inhalable nanoparticulate STING agonist synergizes with radiotherapy to confer long-term control of lung metastases. Nat. Commun. 10, 5108 (2019).

    CAS 
    Article 

    Google Scholar 

  • 21.

    He, Y. et al. Self-assembled cGAMP-STINGΔTM signaling complex as a bioinspired platform for cGAMP delivery. Sci. Adv. 6, eaba7589 (2020).

    CAS 
    Article 

    Google Scholar 

  • 22.

    Li, S. et al. Prolonged activation of innate immune pathways by a polyvalent STING agonist. Nat. Biomed. Eng. https://doi.org/10.1038/s41551-020-00675-9 (2021).

  • 23.

    Chaigne-Delalande, B. & Lenardo, M. J. Divalent cation signaling in immune cells. Trends Immunol. 35, 332–344 (2014).

    CAS 
    Article 

    Google Scholar 

  • 24.

    Wang, C., Zhang, R., Wei, X., Lv, M. & Jiang, Z. Metalloimmunology: the metal ion-controlled immunity. Adv. Immunol. 145, 187–241 (2020).

    CAS 
    Article 

    Google Scholar 

  • 25.

    Macian, F. NFAT proteins: key regulators of T-cell development and function. Nat. Rev. Immunol. 5, 472–484 (2005).

    CAS 
    Article 

    Google Scholar 

  • 26.

    Shi, X. et al. Ca2+ regulates T-cell receptor activation by modulating the charge property of lipids. Nature 493, 111–115 (2013).

    Article 
    CAS 

    Google Scholar 

  • 27.

    Chandy, K. G. & Norton, R. S. Immunology: channelling potassium to fight cancer. Nature 537, 497–499 (2016).

    CAS 
    Article 

    Google Scholar 

  • 28.

    Vodnala, S. K. et al. T cell stemness and dysfunction in tumors are triggered by a common mechanism. Science https://doi.org/10.1126/science.aau0135 (2019).

  • 29.

    Munoz-Planillo, R. et al. K+ efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter. Immunity 38, 1142–1153 (2013).

    CAS 
    Article 

    Google Scholar 

  • 30.

    Rossol, M. et al. Extracellular Ca2+ is a danger signal activating the NLRP3 inflammasome through G protein-coupled calcium sensing receptors. Nat. Commun. 3, 1329 (2012).

    Article 
    CAS 

    Google Scholar 

  • 31.

    Scambler, T. et al. ENaC-mediated sodium influx exacerbates NLRP3-dependent inflammation in cystic fibrosis. Elife https://doi.org/10.7554/eLife.49248 (2019)

  • 32.

    Hood, M. I. & Skaar, E. P. Nutritional immunity: transition metals at the pathogen–host interface. Nat. Rev. Microbiol. 10, 525–537 (2012).

    CAS 
    Article 

    Google Scholar 

  • 33.

    Bessman, N. J. et al. Dendritic cell-derived hepcidin sequesters iron from the microbiota to promote mucosal healing. Science 368, 186–189 (2020).

    CAS 
    Article 

    Google Scholar 

  • 34.

    Wang, C. et al. Manganese increases the sensitivity of the cGAS-STING pathway for double-stranded DNA and is required for the host defense against DNA viruses. Immunity 48, 675–687 (2018).

    CAS 
    Article 

    Google Scholar 

  • 35.

    Du, M. & Chen, Z. J. DNA-induced liquid phase condensation of cGAS activates innate immune signaling. Science 361, 704–709 (2018).

    CAS 
    Article 

    Google Scholar 

  • 36.

    Chaigne-Delalande, B. et al. Mg2+ regulates cytotoxic functions of NK and CD8 T cells in chronic EBV infection through NKG2D. Science 341, 186–191 (2013).

    CAS 
    Article 

    Google Scholar 

  • 37.

    Lv, M. et al. Manganese is critical for antitumor immune responses via cGAS-STING and improves the efficacy of clinical immunotherapy. Cell Res. 30, 966–979 (2020).

    CAS 
    Article 

    Google Scholar 

  • 38.

    Hou, L. et al. Manganese-based nanoactivator optimizes cancer immunotherapy via enhancing innate immunity. ACS Nano 14, 3927–3940 (2020).

    CAS 
    Article 

    Google Scholar 

  • 39.

    Chen, C. et al. Cytosolic delivery of thiolated Mn-cGAMP nanovaccine to enhance the antitumor immune responses. Small 17, e2006970 (2021).

    Article 
    CAS 

    Google Scholar 

  • 40.

    Yang, X. et al. Converting primary tumor towards an in situ STING-activating vaccine via a biomimetic nanoplatform against recurrent and metastatic tumors. Nano Today 38, 101109 (2021).

    Article 
    CAS 

    Google Scholar 

  • 41.

    Aschner, J. L. & Aschner, M. Nutritional aspects of manganese homeostasis. Mol. Aspects Med. 26, 353–362 (2005).

    CAS 
    Article 

    Google Scholar 

  • 42.

    Wang, C. Mangafodipir trisodium (MnDPDP)-enhanced magnetic resonance imaging of the liver and pancreas. Acta Radiol. Suppl. 415, 1–31 (1998).

    CAS 

    Google Scholar 

  • 43.

    Takagi, Y. et al. Evaluation of indexes of in vivo manganese status and the optimal intravenous dose for adult patients undergoing home parenteral nutrition. Am. J. Clin. Nutr. 75, 112–118 (2002).

    CAS 
    Article 

    Google Scholar 

  • 44.

    Pan, D., Schmieder, A. H., Wickline, S. A. & Lanza, G. M. Manganese-based MRI contrast agents: past, present and future. Tetrahedron 67, 8431–8444 (2011).

    CAS 
    Article 

    Google Scholar 

  • 45.

    Jin, L. et al. MPYS is required for IFN response factor 3 activation and type I IFN production in the response of cultured phagocytes to bacterial second messengers cyclic-di-AMP and cyclic-di-GMP. J. Immunol. 187, 2595–2601 (2011).

    CAS 
    Article 

    Google Scholar 

  • 46.

    Li, L. et al. Hydrolysis of 2′3′-cGAMP by ENPP1 and design of nonhydrolyzable analogs. Nat. Chem. Biol. 10, 1043–1048 (2014).

    CAS 
    Article 

    Google Scholar 

  • 47.

    Thanos, D. & Maniatis, T. Virus induction of human IFNβ gene expression requires the assembly of an enhanceosome. Cell 83, 1091–1100 (1995).

    CAS 
    Article 

    Google Scholar 

  • 48.

    Wang, J. et al. NF-κB RelA subunit is crucial for early IFN-β expression and resistance to RNA virus replication. J. Immunol. 185, 1720–1729 (2010).

    CAS 
    Article 

    Google Scholar 

  • 49.

    Ting, J. P., Duncan, J. A. & Lei, Y. How the noninflammasome NLRs function in the innate immune system. Science 327, 286–290 (2010).

    CAS 
    Article 

    Google Scholar 

  • 50.

    Liu, S. et al. Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation. Science 347, aaa2630 (2015).

    Article 
    CAS 

    Google Scholar 

  • 51.

    Shin, H. M. et al. Inhibitory action of novel aromatic diamine compound on lipopolysaccharide-induced nuclear translocation of NF-κB without affecting IκB degradation. FEBS Lett. 571, 50–54 (2004).

    CAS 
    Article 

    Google Scholar 

  • 52.

    Kuai, R. et al. Elimination of established tumors with nanodisc-based combination chemoimmunotherapy. Sci. Adv. 4, eaao1736 (2018).

    Article 
    CAS 

    Google Scholar 

  • 53.

    Sivick, K. E. et al. Magnitude of therapeutic STING activation determines CD8+ T cell-mediated anti-tumor immunity. Cell Rep. 25, 3074–3085 (2018).

    CAS 
    Article 

    Google Scholar 

  • 54.

    Luo, X. et al. HPV16 drives cancer immune escape via NLRX1-mediated degradation of STING. J. Clin. Invest. 130, 1635–1652 (2020).

    CAS 
    Article 

    Google Scholar 

  • 55.

    Lewis, R. & Tatken, R. Registry of Toxic Effects of Chemical Substances Vol. 1 (US Department of Health and Human Services, National Institute for Occupational Safety and Health, 1980).

  • 56.

    Greger, J. L. Nutrition versus toxicology of manganese in humans: evaluation of potential biomarkers. Neurotoxicology 20, 205–212 (1999).

    CAS 

    Google Scholar 

  • 57.

    Lutz, M. B. et al. An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow. J. Immunol. Methods 223, 77–92 (1999).

    CAS 
    Article 

    Google Scholar 

  • 58.

    Liu, D., Poon, C., Lu, K., He, C. & Lin, W. Self-assembled nanoscale coordination polymers with trigger release properties for effective anticancer therapy. Nat. Commun. 5, 4182 (2014).

    CAS 
    Article 

    Google Scholar 

  • 59.

    Liu, J. et al. Light-controlled drug release from singlet-oxygen sensitive nanoscale coordination polymers enabling cancer combination therapy. Biomaterials 146, 40–48 (2017).

    CAS 
    Article 

    Google Scholar 

  • 60.

    Yang, Y. et al. One-pot synthesis of pH-responsive charge-switchable PEGylated nanoscale coordination polymers for improved cancer therapy. Biomaterials 156, 121–133 (2018).

    CAS 
    Article 

    Google Scholar 

  • 61.

    Kuai, R. et al. Subcutaneous nanodisc vaccination with neoantigens for combination cancer immunotherapy. Bioconjug. Chem. 29, 771–775 (2018).

    CAS 
    Article 

    Google Scholar 

  • Source link