Preloader

Aluminum particles generated during millisecond electric pulse application enhance adenovirus-mediated gene transfer in L929 cells

  • 1.

    Mir, L. M. Electroporation-based gene therapy: Recent evolution in the mechanism description and technology developments. Methods Mol. Biol. 1121, 3–23 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 2.

    Young, J. L. & Dean, D. A. Electroporation-mediated gene delivery. In Nonviral Vectors for Gene Therapy — Physical Methods and Medical Translation (eds Huang, L. et al.) 49–88 (Elsevier, 2015).

    Chapter 

    Google Scholar 

  • 3.

    Lambricht, L. et al. Clinical potential of electroporation for gene therapy and DNA vaccine delivery. Expert Opin. Drug Deliv. 13, 295–310 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 4.

    Spanggaard, I. et al. Gene electrotransfer of plasmid antiangiogenic metargidin peptide (AMEP) in disseminated melanoma: Safety and efficacy results of a phase I first-in-man study. Hum. Gene Ther. Clin. Dev. 24, 99–107 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 5.

    Heller, R. & Heller, L. C. Gene electrotransfer clinical trials. Adv. Genet. 89, 235–262 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 6.

    Satkauskas, S., Ruzgys, P. & Venslauskas, M. S. Towards the mechanisms for efficient gene transfer into cells and tissues by means of cell electroporation. Expert Opin. Biol. Ther. 12, 275–286 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 7.

    Teissié, J. Electrically mediated gene delivery: Basic and translational concepts. In Novel Gene Therapy Approaches (eds Wei, M. & Good, D.) (IntechOpen, 2013). https://doi.org/10.5772/54780.

    Chapter 

    Google Scholar 

  • 8.

    Pavlin, M. & Kandušer, M. New Insights into the mechanisms of gene electrotransfer — Experimental and theoretical analysis. Sci. Rep. 5, 9132. https://doi.org/10.1038/srep09132 (2015).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 9.

    Venslauskas, M. S. & Šatkauskas, S. Mechanisms of transfer of bioactive molecules through the cell membrane by electroporation. Eur. Biophys. J. 44, 277–289 (2015).

    PubMed 
    Article 

    Google Scholar 

  • 10.

    Rosazza, C., Meglic, S. H., Zumbusch, A., Rols, M.-P. & Miklavčič, D. Gene electrotransfer: A mechanistic perspective. Curr. Gene Ther. 16, 98–129 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 11.

    Silve, A. & Mir, L. M. Cell electropermeabilization and small molecules cellular uptake: The electrochemotherapy concept. In Electroporation in Science and Medicine (eds Kee, S. et al.) 69–82 (Springer, 2010).

    Google Scholar 

  • 12.

    Saulis, G. & Saulė, R. Size of the pores created by an electric pulse: Microsecond vs millisecond pulses. Biochim. Biophys. Acta 1818, 3032–3039 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 13.

    Silve, A., Leray, I. & Mir, L. M. Demonstration of cell membrane permeabilization to medium-sized molecules caused by a single 10 ns electric pulse. Bioelectrochemistry 87, 260–264 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 14.

    Chang, D. C. & Reese, T. S. Changes in membrane structure induced by electroporation as revealed by rapid-freezing electron microscopy. Biophys. J. 58, 1–12 (1990).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 15.

    Sengel, J. T. & Wallace, M. I. Imaging the dynamics of individual electropores. Proc. Natl. Acad. Sci. U.S.A. 113, 5281–5286 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 16.

    Breton, M. & Mir, L. M. Investigation of the chemical mechanisms involved in the electropulsation of membranes at the molecular level. Bioelectrochemistry 119, 76–83 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 17.

    Kotnik, T., Rems, L., Tarek, M. & Miklavčič, D. Membrane electroporation and electropermeabilization: Mechanisms and models. Annu. Rev. Biophys. 48, 63–91 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 18.

    Golzio, M., Teissié, J. & Rols, M.-P. Direct visualization at the single-cell level of electrically mediated gene delivery. Proc. Natl. Acad. Sci. U.S.A. 99, 1292–1297 (2002).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 19.

    Faurie, C. et al. Electro-mediated gene transfer and expression are controlled by the life-time of DNA/membrane complex formation. J. Gen. Med. 12, 117–125 (2010).

    CAS 
    Article 

    Google Scholar 

  • 20.

    Kandušer, M., Miklavčič, D. & Pavlin, M. Mechanisms involved in gene electrotransfer using high- and low-voltage pulses—An in vitro study. Bioelectrochemistry 74, 265–271 (2009).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 21.

    Čepurnienė, K., Ruzgys, P., Treinys, R., Šatkauskienė, I. & Šatkauskas, S. Influence of plasmid concentration on DNA electrotransfer in vitro using high-voltage and low-voltage pulses. J. Membr. Biol. 236, 81–85 (2010).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 22.

    Pavlin, M., Flisar, K. & Kandušer, M. The role of electrophoresis in gene electrotransfer. J. Membr. Biol. 236, 75–79 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 23.

    Haberl, S. et al. Effect of different parameters used for in vitro gene electrotransfer on gene expression efficiency, cell viability and visualization of plasmid DNA at the membrane level. J. Gene Med. 15, 169–181 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 24.

    Liew, A. et al. Robust, efficient, and practical electrogene transfer method for human mesenchymal stem cells using square electric pulses. Hum. Gene Ther. Methods 24, 289–297 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 25.

    Mir, L. M. et al. High-efficiency gene transfer into skeletal muscle mediated by electric pulses. Proc. Natl. Acad. Sci. U.S.A. 96, 4262–4267 (1999).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 26.

    Satkauskas, S. et al. Electrophoretic component of electric pulses determines the efficacy of in vivo DNA electrotransfer. Hum. Gene Ther. 16, 1194–1201 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 27.

    André, F. M. et al. Efficiency of high- and low-voltage pulse combinations for gene electrotransfer in muscle, liver, tumor, and skin. Hum. Gene Ther. 19, 1261–1271 (2008).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 28.

    Rols, M.-P., Femenina, P. & Teissié, J. Long-lived macropinocytosis takes place in electropermeabilized mammalian cells. Biochem. Biophys. Res. Commun. 208, 26–35 (1995).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 29.

    Rosenberg, Y. & Korenstein, R. Incorporation of macromolecules into cells and vesicles by low electric fields: induction of endocytotic-like processes. Bioelectrochem. Bioenerg. 42, 275–281 (1997).

    Article 

    Google Scholar 

  • 30.

    Antov, Y., Barbul, A., Mantsur, H. & Korenstein, R. Electroendocytosis: Exposure of cells to pulsed low electric fields enhances adsorption and uptake of macromolecules. Biophys. J. 88, 2206–2223 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 31.

    Rosazza, C., Escoffre, J.-M., Zumbusch, A. & Rols, M.-P. The actine cytoskeleton has an active role in the electrotransfer of plasmid DNA in mammalian cells. Mol. Ther. 19, 913–921 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 32.

    Escoffre, J.-M. et al. Electromediated formation of DNA complexes with cell membranes and its consequences for gene delivery. Biochem. Biophys. Acta 1808, 1538–1543 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 33.

    Rosazza, C. et al. Cholesterol implications in plasmid DNA electrotransfer: Evidence for the involvement of endocytotic pathways. Int. J. Pharm. 423, 134–143 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 34.

    Wu, M. & Yuan, F. Membrane binding of plasmid DNA and endocytic pathways are involved in electrotransfection of mammalian cells. PLoS ONE 6, e20923. https://doi.org/10.1371/journal.pone.0020923 (2011).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 35.

    Chang, C.-C., Wu, M. & Yuan, F. Role of specific endocytic pathways in electrotransfection of cells. Mol. Ther. Methods Clin. Dev. 1, 14058. https://doi.org/10.1038/mtm.2014.58 (2014).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 36.

    Markelc, B. et al. Inhibitor of endocytosis impairs gene electrotransfer to mouse muscle in vivo. Bioelectrochemistry 103, 111–119 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 37.

    Mao, M. et al. Involvement of Rac1-dependent macropinocytosis pathway in plasmid DNA delivery by electrotransfection. Mol. Ther. 25, 803–815 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 38.

    Cervia, L. D., Chang, C.-C., Wang, L. & Yuan, F. Distinct effect of endosomal escape and inhibition of endosomal trafficking on gene delivery via electrotransfection. PLoS ONE 12, e0171699. https://doi.org/10.1371/journal.pone.0171699 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 39.

    Rosazza, C. et al. Endocytosis and endosomal trafficking of DNA after gene electrotransfer in vitro. Mol. Ther. Nucleic Acids 5, e286. https://doi.org/10.1038/mtna.2015.59 (2016).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 40.

    Wang, L., Miller, S. E. & Yuan, F. Ultrastructural analysis of vesicular transport in electrotransfection. Microsc. Microanal. 24, 553–563 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 41.

    Pavlin, M., Pucihar, G. & Kandušer, M. The role of electrically stimulated endocytosis in gene electrotransfer. Bioelectrochemistry 83, 38–45 (2012).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 42.

    Phez, E., Gibot, L. & Rols, M.-P. How transient alterations of organelles in mammalian cells submitted to electric field may explain some aspects of gene electroporation process. Bioelectrochemistry 112, 166–172 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 43.

    Lesueur, L. L., Mir, L. M. & André, F. M. Overcoming the specific toxicity of large plasmid electrotransfer in primary cells in vitro. Mol. Ther. Nucleic Acids 5, e291. https://doi.org/10.1038/mtna.2016.4 (2016).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 44.

    Bobinnec, Y. et al. Centriole disassembly in vivo and its effect on centrosome structure and function in vertebrate cells. J. Cell. Biol. 143, 1575–1589 (1998).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 45.

    Jullienne, B. et al. Efficient delivery of angiostatin K1–5 into tumors following insertion of an NGR peptide into adenovirus capsid. Gene Ther. 16, 1405–1415 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 46.

    Ragot, T. et al. Efficient adenovirus-mediated transfer of a human minidystrophin gene to skeletal muscle of mdx mice. Nature 361, 647–650 (1993).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 47.

    Bergelson, J. M. et al. Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5. Science 275, 1320–1323 (1997).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 48.

    Bergelson, J. M. et al. The murine CAR homolog is a receptor for coxsackie B viruses and adenoviruses. J. Virol. 72, 415–419 (1998).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 49.

    Stasiak, A. C. & Stehle, T. Human adenovirus binding to host cell receptors: A structural view. Med. Microbiol. Immunol. 209, 325–333 (2020).

    PubMed 
    Article 

    Google Scholar 

  • 50.

    Greber, U. F. & Flatt, J. W. Adenovirus entry: From infection to immunity. Annu. Rev. Virol. 6, 177–197 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 51.

    Hensen, L. C. M., Hoeben, R. C. & Bots, S. T. F. Adenovirus receptor expression in cancer and its multifaceted role in oncolytic adenovirus therapy. Int. J. Mol. Sci. 21, 6828. https://doi.org/10.3390/ijms21186828 (2020).

    CAS 
    Article 
    PubMed Central 
    PubMed 

    Google Scholar 

  • 52.

    Lyle, C. & McCormick, F. Integrin αvβ5 is a primary receptor for adenovirus in CAR-negative cells. Virol. J. 7, 148–161 (2010).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 53.

    Escoffre, J.-M. et al. New insights in the gene electrotransfer process: Evidence for the involvement of the plasmid DNA topology. Curr. Gene Ther. 12, 417–422 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 54.

    Ragot, T., Opolon, P. & Perricaudet, M. Adenoviral gene delivery. In Methods in Muscle Biology (eds Emerson, C. & Sweeney, H. L.) 229–260 (Academic Press, 1998).

    Google Scholar 

  • 55.

    Blanche, F. et al. An improved anion-exchange HPLC method for the detection and purification of adenoviral particles. Gene Ther. 7, 1055–1062 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 56.

    Mittereder, N., March, K. L. & Trapnell, B. C. Evaluation of the concentration and bioactivity of adenovirus vectors for gene therapy. J. Virol. 70, 7498–7509 (1996).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 57.

    Kotnik, T., Miklavčič, D. & Mir, L. M. Cell membrane electropermeabilization by symmetrical bipolar rectangular pulses. Part II. Reduced electrolytic contamination. Bioelectrochemistry 54, 91–95 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 58.

    Loomis-Husselbee, J. W., Cullen, P. J., Irvine, R. F. & Dawson, A. P. Electroporation can cause artefacts due to solubilization of cations from the electrode plates. Biochem. J. 277, 883–885 (1991).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 59.

    Stapulionis, R. Electric pulse-induced precipitation of biological macromolecules in electroporation. Bioelectrochem. Bioenerg. 48, 249–254 (1999).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 60.

    Tomov, T. & Tsoneva, I. Are the stainless steel electrodes inert? Bioelectrochemistry 51, 207–209 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 61.

    Saulis, G., Rodaitė-Riševičienė, R. & Snitka, V. Increase of the roughness of the stainless-steel anode surface due to the exposure to high-voltage electric pulses as revealed by atomic force microscopy. Bioelectrochemistry 70, 519–523 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 62.

    Rodaitė-Riševičienė, R., Saulė, R., Snitka, V. & Saulis, G. Release of iron ions from the stainless steel anode occurring during high-voltage pulses and its consequences for cell electroporation technology. IEEE Trans. Plasma Sci. 42, 249–254 (2014).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 63.

    Friedrich, U. et al. High efficiency electrotransfection with aluminum electrodes using microsecond controlled pulses. Bioelectrochem. Bioenerg. 47, 103–111 (1998).

    CAS 
    Article 

    Google Scholar 

  • 64.

    Saulis, G., Lapė, R., Pranevičiūtė, R. & Mickevičius, D. Changes of the solution pH due to exposure by high-voltage electric pulses. Bioelectrochemistry 67, 101–108 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 65.

    Olaiz, N. et al. Tissue damage modeling in gene electrotransfer: The role of pH. Bioelectrochemistry 100, 105–111 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 66.

    Chang, C.-C. et al. Improvement in electrotransfection of cells using carbon-based electrodes. Cell. Mol. Bioeng. 9, 538–545 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 67.

    Soo-Yeon, K., Sang-Jin, L., Hyo-Kyung, H. & Soo-Jeong, L. Aminoclay as a highly effective cationic vehicle for enhancing adenovirus-mediated gene transfer through nanobiohybrid complex formation. Acta Biomater. 49, 521–530 (2017).

    Article 
    CAS 

    Google Scholar 

  • 68.

    Sanjuán, R. Collective infectious units in viruses. Trends Microbiol. 25, 402–412 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Source link