Mir, L. M. Electroporation-based gene therapy: Recent evolution in the mechanism description and technology developments. Methods Mol. Biol. 1121, 3–23 (2014).
Google Scholar
Young, J. L. & Dean, D. A. Electroporation-mediated gene delivery. In Nonviral Vectors for Gene Therapy — Physical Methods and Medical Translation (eds Huang, L. et al.) 49–88 (Elsevier, 2015).
Google Scholar
Lambricht, L. et al. Clinical potential of electroporation for gene therapy and DNA vaccine delivery. Expert Opin. Drug Deliv. 13, 295–310 (2016).
Google Scholar
Spanggaard, I. et al. Gene electrotransfer of plasmid antiangiogenic metargidin peptide (AMEP) in disseminated melanoma: Safety and efficacy results of a phase I first-in-man study. Hum. Gene Ther. Clin. Dev. 24, 99–107 (2013).
Google Scholar
Heller, R. & Heller, L. C. Gene electrotransfer clinical trials. Adv. Genet. 89, 235–262 (2015).
Google Scholar
Satkauskas, S., Ruzgys, P. & Venslauskas, M. S. Towards the mechanisms for efficient gene transfer into cells and tissues by means of cell electroporation. Expert Opin. Biol. Ther. 12, 275–286 (2012).
Google Scholar
Teissié, J. Electrically mediated gene delivery: Basic and translational concepts. In Novel Gene Therapy Approaches (eds Wei, M. & Good, D.) (IntechOpen, 2013). https://doi.org/10.5772/54780.
Google Scholar
Pavlin, M. & Kandušer, M. New Insights into the mechanisms of gene electrotransfer — Experimental and theoretical analysis. Sci. Rep. 5, 9132. https://doi.org/10.1038/srep09132 (2015).
Google Scholar
Venslauskas, M. S. & Šatkauskas, S. Mechanisms of transfer of bioactive molecules through the cell membrane by electroporation. Eur. Biophys. J. 44, 277–289 (2015).
Google Scholar
Rosazza, C., Meglic, S. H., Zumbusch, A., Rols, M.-P. & Miklavčič, D. Gene electrotransfer: A mechanistic perspective. Curr. Gene Ther. 16, 98–129 (2016).
Google Scholar
Silve, A. & Mir, L. M. Cell electropermeabilization and small molecules cellular uptake: The electrochemotherapy concept. In Electroporation in Science and Medicine (eds Kee, S. et al.) 69–82 (Springer, 2010).
Saulis, G. & Saulė, R. Size of the pores created by an electric pulse: Microsecond vs millisecond pulses. Biochim. Biophys. Acta 1818, 3032–3039 (2012).
Google Scholar
Silve, A., Leray, I. & Mir, L. M. Demonstration of cell membrane permeabilization to medium-sized molecules caused by a single 10 ns electric pulse. Bioelectrochemistry 87, 260–264 (2012).
Google Scholar
Chang, D. C. & Reese, T. S. Changes in membrane structure induced by electroporation as revealed by rapid-freezing electron microscopy. Biophys. J. 58, 1–12 (1990).
Google Scholar
Sengel, J. T. & Wallace, M. I. Imaging the dynamics of individual electropores. Proc. Natl. Acad. Sci. U.S.A. 113, 5281–5286 (2016).
Google Scholar
Breton, M. & Mir, L. M. Investigation of the chemical mechanisms involved in the electropulsation of membranes at the molecular level. Bioelectrochemistry 119, 76–83 (2018).
Google Scholar
Kotnik, T., Rems, L., Tarek, M. & Miklavčič, D. Membrane electroporation and electropermeabilization: Mechanisms and models. Annu. Rev. Biophys. 48, 63–91 (2019).
Google Scholar
Golzio, M., Teissié, J. & Rols, M.-P. Direct visualization at the single-cell level of electrically mediated gene delivery. Proc. Natl. Acad. Sci. U.S.A. 99, 1292–1297 (2002).
Google Scholar
Faurie, C. et al. Electro-mediated gene transfer and expression are controlled by the life-time of DNA/membrane complex formation. J. Gen. Med. 12, 117–125 (2010).
Google Scholar
Kandušer, M., Miklavčič, D. & Pavlin, M. Mechanisms involved in gene electrotransfer using high- and low-voltage pulses—An in vitro study. Bioelectrochemistry 74, 265–271 (2009).
Google Scholar
Čepurnienė, K., Ruzgys, P., Treinys, R., Šatkauskienė, I. & Šatkauskas, S. Influence of plasmid concentration on DNA electrotransfer in vitro using high-voltage and low-voltage pulses. J. Membr. Biol. 236, 81–85 (2010).
Google Scholar
Pavlin, M., Flisar, K. & Kandušer, M. The role of electrophoresis in gene electrotransfer. J. Membr. Biol. 236, 75–79 (2010).
Google Scholar
Haberl, S. et al. Effect of different parameters used for in vitro gene electrotransfer on gene expression efficiency, cell viability and visualization of plasmid DNA at the membrane level. J. Gene Med. 15, 169–181 (2013).
Google Scholar
Liew, A. et al. Robust, efficient, and practical electrogene transfer method for human mesenchymal stem cells using square electric pulses. Hum. Gene Ther. Methods 24, 289–297 (2013).
Google Scholar
Mir, L. M. et al. High-efficiency gene transfer into skeletal muscle mediated by electric pulses. Proc. Natl. Acad. Sci. U.S.A. 96, 4262–4267 (1999).
Google Scholar
Satkauskas, S. et al. Electrophoretic component of electric pulses determines the efficacy of in vivo DNA electrotransfer. Hum. Gene Ther. 16, 1194–1201 (2005).
Google Scholar
André, F. M. et al. Efficiency of high- and low-voltage pulse combinations for gene electrotransfer in muscle, liver, tumor, and skin. Hum. Gene Ther. 19, 1261–1271 (2008).
Google Scholar
Rols, M.-P., Femenina, P. & Teissié, J. Long-lived macropinocytosis takes place in electropermeabilized mammalian cells. Biochem. Biophys. Res. Commun. 208, 26–35 (1995).
Google Scholar
Rosenberg, Y. & Korenstein, R. Incorporation of macromolecules into cells and vesicles by low electric fields: induction of endocytotic-like processes. Bioelectrochem. Bioenerg. 42, 275–281 (1997).
Google Scholar
Antov, Y., Barbul, A., Mantsur, H. & Korenstein, R. Electroendocytosis: Exposure of cells to pulsed low electric fields enhances adsorption and uptake of macromolecules. Biophys. J. 88, 2206–2223 (2005).
Google Scholar
Rosazza, C., Escoffre, J.-M., Zumbusch, A. & Rols, M.-P. The actine cytoskeleton has an active role in the electrotransfer of plasmid DNA in mammalian cells. Mol. Ther. 19, 913–921 (2011).
Google Scholar
Escoffre, J.-M. et al. Electromediated formation of DNA complexes with cell membranes and its consequences for gene delivery. Biochem. Biophys. Acta 1808, 1538–1543 (2011).
Google Scholar
Rosazza, C. et al. Cholesterol implications in plasmid DNA electrotransfer: Evidence for the involvement of endocytotic pathways. Int. J. Pharm. 423, 134–143 (2012).
Google Scholar
Wu, M. & Yuan, F. Membrane binding of plasmid DNA and endocytic pathways are involved in electrotransfection of mammalian cells. PLoS ONE 6, e20923. https://doi.org/10.1371/journal.pone.0020923 (2011).
Google Scholar
Chang, C.-C., Wu, M. & Yuan, F. Role of specific endocytic pathways in electrotransfection of cells. Mol. Ther. Methods Clin. Dev. 1, 14058. https://doi.org/10.1038/mtm.2014.58 (2014).
Google Scholar
Markelc, B. et al. Inhibitor of endocytosis impairs gene electrotransfer to mouse muscle in vivo. Bioelectrochemistry 103, 111–119 (2015).
Google Scholar
Mao, M. et al. Involvement of Rac1-dependent macropinocytosis pathway in plasmid DNA delivery by electrotransfection. Mol. Ther. 25, 803–815 (2017).
Google Scholar
Cervia, L. D., Chang, C.-C., Wang, L. & Yuan, F. Distinct effect of endosomal escape and inhibition of endosomal trafficking on gene delivery via electrotransfection. PLoS ONE 12, e0171699. https://doi.org/10.1371/journal.pone.0171699 (2017).
Google Scholar
Rosazza, C. et al. Endocytosis and endosomal trafficking of DNA after gene electrotransfer in vitro. Mol. Ther. Nucleic Acids 5, e286. https://doi.org/10.1038/mtna.2015.59 (2016).
Google Scholar
Wang, L., Miller, S. E. & Yuan, F. Ultrastructural analysis of vesicular transport in electrotransfection. Microsc. Microanal. 24, 553–563 (2018).
Google Scholar
Pavlin, M., Pucihar, G. & Kandušer, M. The role of electrically stimulated endocytosis in gene electrotransfer. Bioelectrochemistry 83, 38–45 (2012).
Google Scholar
Phez, E., Gibot, L. & Rols, M.-P. How transient alterations of organelles in mammalian cells submitted to electric field may explain some aspects of gene electroporation process. Bioelectrochemistry 112, 166–172 (2016).
Google Scholar
Lesueur, L. L., Mir, L. M. & André, F. M. Overcoming the specific toxicity of large plasmid electrotransfer in primary cells in vitro. Mol. Ther. Nucleic Acids 5, e291. https://doi.org/10.1038/mtna.2016.4 (2016).
Google Scholar
Bobinnec, Y. et al. Centriole disassembly in vivo and its effect on centrosome structure and function in vertebrate cells. J. Cell. Biol. 143, 1575–1589 (1998).
Google Scholar
Jullienne, B. et al. Efficient delivery of angiostatin K1–5 into tumors following insertion of an NGR peptide into adenovirus capsid. Gene Ther. 16, 1405–1415 (2009).
Google Scholar
Ragot, T. et al. Efficient adenovirus-mediated transfer of a human minidystrophin gene to skeletal muscle of mdx mice. Nature 361, 647–650 (1993).
Google Scholar
Bergelson, J. M. et al. Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5. Science 275, 1320–1323 (1997).
Google Scholar
Bergelson, J. M. et al. The murine CAR homolog is a receptor for coxsackie B viruses and adenoviruses. J. Virol. 72, 415–419 (1998).
Google Scholar
Stasiak, A. C. & Stehle, T. Human adenovirus binding to host cell receptors: A structural view. Med. Microbiol. Immunol. 209, 325–333 (2020).
Google Scholar
Greber, U. F. & Flatt, J. W. Adenovirus entry: From infection to immunity. Annu. Rev. Virol. 6, 177–197 (2019).
Google Scholar
Hensen, L. C. M., Hoeben, R. C. & Bots, S. T. F. Adenovirus receptor expression in cancer and its multifaceted role in oncolytic adenovirus therapy. Int. J. Mol. Sci. 21, 6828. https://doi.org/10.3390/ijms21186828 (2020).
Google Scholar
Lyle, C. & McCormick, F. Integrin αvβ5 is a primary receptor for adenovirus in CAR-negative cells. Virol. J. 7, 148–161 (2010).
Google Scholar
Escoffre, J.-M. et al. New insights in the gene electrotransfer process: Evidence for the involvement of the plasmid DNA topology. Curr. Gene Ther. 12, 417–422 (2012).
Google Scholar
Ragot, T., Opolon, P. & Perricaudet, M. Adenoviral gene delivery. In Methods in Muscle Biology (eds Emerson, C. & Sweeney, H. L.) 229–260 (Academic Press, 1998).
Blanche, F. et al. An improved anion-exchange HPLC method for the detection and purification of adenoviral particles. Gene Ther. 7, 1055–1062 (2000).
Google Scholar
Mittereder, N., March, K. L. & Trapnell, B. C. Evaluation of the concentration and bioactivity of adenovirus vectors for gene therapy. J. Virol. 70, 7498–7509 (1996).
Google Scholar
Kotnik, T., Miklavčič, D. & Mir, L. M. Cell membrane electropermeabilization by symmetrical bipolar rectangular pulses. Part II. Reduced electrolytic contamination. Bioelectrochemistry 54, 91–95 (2001).
Google Scholar
Loomis-Husselbee, J. W., Cullen, P. J., Irvine, R. F. & Dawson, A. P. Electroporation can cause artefacts due to solubilization of cations from the electrode plates. Biochem. J. 277, 883–885 (1991).
Google Scholar
Stapulionis, R. Electric pulse-induced precipitation of biological macromolecules in electroporation. Bioelectrochem. Bioenerg. 48, 249–254 (1999).
Google Scholar
Tomov, T. & Tsoneva, I. Are the stainless steel electrodes inert? Bioelectrochemistry 51, 207–209 (2000).
Google Scholar
Saulis, G., Rodaitė-Riševičienė, R. & Snitka, V. Increase of the roughness of the stainless-steel anode surface due to the exposure to high-voltage electric pulses as revealed by atomic force microscopy. Bioelectrochemistry 70, 519–523 (2007).
Google Scholar
Rodaitė-Riševičienė, R., Saulė, R., Snitka, V. & Saulis, G. Release of iron ions from the stainless steel anode occurring during high-voltage pulses and its consequences for cell electroporation technology. IEEE Trans. Plasma Sci. 42, 249–254 (2014).
Google Scholar
Friedrich, U. et al. High efficiency electrotransfection with aluminum electrodes using microsecond controlled pulses. Bioelectrochem. Bioenerg. 47, 103–111 (1998).
Google Scholar
Saulis, G., Lapė, R., Pranevičiūtė, R. & Mickevičius, D. Changes of the solution pH due to exposure by high-voltage electric pulses. Bioelectrochemistry 67, 101–108 (2005).
Google Scholar
Olaiz, N. et al. Tissue damage modeling in gene electrotransfer: The role of pH. Bioelectrochemistry 100, 105–111 (2014).
Google Scholar
Chang, C.-C. et al. Improvement in electrotransfection of cells using carbon-based electrodes. Cell. Mol. Bioeng. 9, 538–545 (2016).
Google Scholar
Soo-Yeon, K., Sang-Jin, L., Hyo-Kyung, H. & Soo-Jeong, L. Aminoclay as a highly effective cationic vehicle for enhancing adenovirus-mediated gene transfer through nanobiohybrid complex formation. Acta Biomater. 49, 521–530 (2017).
Google Scholar
Sanjuán, R. Collective infectious units in viruses. Trends Microbiol. 25, 402–412 (2017).
Google Scholar

