Taylor, D., Hazenberg, J. & Lee, T. C. Living with cracks: damage and repair in human bone. Nat. Mater. 6, 263–268 (2007).
Google Scholar
Lucchini, R. et al. Role of damage mechanics in nanoindentation of lamellar bone at multiple sizes: experiments and numerical modelling. J. Mech. Behav. Biomed. 4, 1852–1863 (2011).
Google Scholar
Currey, J. D. Hierarchies in biomineral structures. Science 309, 253–254 (2005).
Google Scholar
Fratzl, P. & Weinkamer, R. Nature’s hierarchical materials. Prog. Mater. Sci. 52, 1263–1334 (2007).
Google Scholar
Zimmermann, E. A., Launey, M. E., Barth, H. D. & Ritchie, R. O. Mixed-mode fracture of human cortical bone. Biomaterials 30, 5877–5884 (2009).
Google Scholar
Silva, F. G. A., Moura, M. F. S. F. & Dourado, N. Mixed-mode I-II fracture characterization of human cortical bone using the single leg bending test. J. Mech. Behav. Biom. 54, 72–81 (2016).
Google Scholar
Ma, Z. C., Qiang, Z. F., Zhao, H. W., Piao, H. L. & Ren, L. Q. Mechanical properties of cortical bones related to temperature and orientation of Haversian canals. Mater. Res. Express 7, 015408 (2020).
Google Scholar
Michael, J. K., Devon, L. A., Amanda, M. A. & Kemper, A. R. Effects of sex, age, and two loading rates on the tensile material properties of human rib cortical bone. J. Mech. Behav. Biomed. 102, 10341 (2020).
Zioupos, P. & Currey, J. D. Changes in the stiffness, strength, and toughness of human cortical bone with age. Bone 22, 57–66 (1998).
Google Scholar
Rho, J. Y., Zioupos, P., Currey, J. D. & Pharr, G. M. Microstructural elasticity and regional heterogeneity in human femoral bone of various ages examined by nano-indentation. J. Biomech. 35, 189–198 (2002).
Google Scholar
Giannoudis, P., Tzioupis, C., Almalki, T. & Buckley, R. Fracture healing in osteoporotic fractures: is it really different? A basic science perspective. Injury 38, S90–S99 (2007).
Google Scholar
Wachter, N. J. et al. Correlation of bone mineral density with strength and microstructural parameters of cortical bone in vitro. Bone 31, 90–95 (2002).
Google Scholar
Schwiedrzik, J. et al. Nanoscale deformation mechanisms and yield properties of hydrated bone extracellular matrix. Acta Biomater. 60, 302–314 (2017).
Google Scholar
Gustafsson, A. et al. Linking multiscale deformation to microstructure in cortical bone using in situ loading, digital image correlation, and synchrotron X-ray scattering. Acta Biomater. 69, 323–331 (2018).
Google Scholar
Nalla, R. K., Kinney, J. H. & Ritchie, R. O. Mechanistic fracture criteria for the failure of human cortical bone. Nat. Mater. 2, 164–168 (2003).
Google Scholar
Wang, Y. Y., Naleway, S. E. & Wang, B. Biological and bioinspired materials: structure leading to functional and mechanical performance. Bioact. Mater. 5, 745–757 (2020).
Google Scholar
Grünewald, T. A. et al. Mapping the 3D orientation of nanocrystals and nanostructures in human bone: Indications of novel structural features. Sci. Adv. 6, eaba4171 (2020).
Google Scholar
Rho, J. Y., Zioupos, P., Currey, J. D. & Pharr, G. M. Variations in the individual thick lamellar properties within osteons by nanoindentation. Bone 25, 295–300 (1999).
Google Scholar
Oliver, W. C. & Pharr, G. M. An improved technique for determining hardness and Young’s modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564–1583 (1992).
Google Scholar
Ma, Z. C. et al. Deformation behavior of micro-indentation defects under uniaxial and biaxial loads. Rev. Sci. Instrum. 86, 095112 (2015).
Google Scholar
Zhang, A. R., Zhang, S. & Bian, C. R. Mechanical properties of bovine cortical bone based on the automated ball indentation technique and graphics processing method. J. Mech. Behav. Biomed. Mater. 78, 321–328 (2018).
Google Scholar
Tai, K., Dao, M., Suresh, S., Palazoglu, A. & Ortiz, C. Nanoscale heterogeneity promotes energy dissipation in bone. Nat. Mater. 6, 454–462 (2007).
Google Scholar
Weiner, S., Traub, W. & Wagner, H. D. Lamellar bone: structure-function relations. J. Struct. Biol. 126, 241–255 (1999).
Google Scholar
Yao, H. M., Dao, M., Carnelli, D., Tai, K. S. & Ortiz, C. Size-dependent heterogeneity benefits the mechanical performance of bone. J. Mech. Phys. Solids 59, 64–74 (2011).
Google Scholar
Koester, K. J., Ager, J. W. & Rtchie, R. O. The true toughness of human cortical bone measured with realistically short cracks. Nat. Mater. 7, 672–677 (2008).
Google Scholar
Nalla, R. K., Kruzic, J. J., Kinney, J. H. & Ritchie, R. O. Effect of aging on the toughness of human cortical bone: evaluation by R-curves. Bone 35, 1240–1246 (2004).
Google Scholar
Rho, J. Y., Kuhn-Spearing, L. & Zioupos, P. Mechanical properties and the hierarchical structure of bone. Med. Eng. Phys. 20, 92–102 (1998).
Google Scholar
Ma, Z. C. et al. A novel tensile device for in situ scanning electron microscope mechanical testing. Exp. Tech. 39, 3–11 (2015).
Google Scholar
Alderete, N., Zaheri, A. & Espinosa, H. D. A novel in situ experiment to investigate wear mechanisms in biomaterials. Exp. Mech. 59, 659–667 (2019).
Google Scholar
Hazenberg, J. G., Taylor, D. & Lee, T. C. Mechanisms of short crack growth at constant stress in bone. Biomaterials 27, 2114–2122 (2006).
Google Scholar
Nalla, R. K., Kruzic, J. J., Kinney, J. H. & Ritchie, R. O. Aspects of in vitro fatigue in human cortical bone: time and cycle dependent crack growth. Biomaterials 26, 2183–2195 (2005).
Google Scholar
Gupta, H. S. et al. Cooperative deformation of mineral and collagen in bone at the nanoscale. Proc. Natl Acad. Sci. USA 103, 17741–17746 (2006).
Google Scholar
Gupta, H. S. et al. Nanoscale deformation mechanisms in bone. Nano. Lett. 5, 2108–2011 (2005).
Google Scholar
Schwiedrzik, J. et al. In situ micropillar compression reveals superior strength and ductility but an absence of damage in lamellar bone. Nat. Mater. 13, 740–747 (2014).
Google Scholar
Tertuliano, O. A. & Greer, J. R. The nanocomposite nature of bone drives its strength and damage resistance. Nat. Mater. 15, 1195–1202 (2016).
Google Scholar
Peterlik, H., Roschger, P., Klaushoffer, K. & Fratzl, P. From brittle to ductile fracture of bone. Nat. Mater. 5, 52–55 (2006).
Google Scholar
Qiao, J. W., Zhang, Y. P. & Liaw, K. Serrated flow kinetics in a Zr-based bulk metallic glass. Intermetallics 18, 2057–2064 (2010).
Google Scholar
Leamy, H. J., Wang, T. T. & Chen, H. S. Plastic flow and fracture of metallic glass. Metall. Trans. 3, 699–708 (1972).
Google Scholar
Ma, Z. C. et al. Cyclic stress induced surface nanocrystallization adjacent to indentation edge of Zr-based bulk metallic glass at room temperature. Appl. Surf. Sci. 506, 145044 (2020).
Google Scholar
Reznikov, N., Almany-Magal, R., Shahar, R. & Weiner, S. Three-dimensional imaging of collagen fibril organization in rat circumferential lamellar bone using a dual beam electron microscope reveals ordered and disordered sub-lamellar structures. Bone 52, 676–683 (2013).
Google Scholar
Huang, W. et al. A natural impact-resistant bicontinuous composite nanoparticle coating. Nat. Mater. 19, 1236–1243 (2020).
Google Scholar
Zhang, G. J. et al. The effect of formalin preservation time and temperature on the material properties of bovine gemoral cortical bone tissue. Ann. Biomed. Eng. 47, 937–952 (2019).
Google Scholar
Lim, Y. C., Altman, K. J., Farson, D. F. & Flores, K. M. Micropillar fabrication on bovine cortical bone by direct-write femtosecond laser ablation. J. Biomed. Opt. 14, 064021 (2009).
Google Scholar
ASTM: E9-89a. Standard Test Methods of Compression Testing of Metallic Materials at Room Temperature (ASTM, 2020).
Kochetkova, T. et al. Combining polarized Raman spectroscopy and micropillar compression to study microscale structure-property relationships in mineralized tissues. Acta Biomater. 119, 390–404 (2021).
Google Scholar
Wang, Y. C. et al. In situ TEM study of deformation-induced crystalline-to-amorphous transition in silicon. NPG Asia Mater. 8, e291 (2016).
Google Scholar
Burstein, A. H., Currey, J. D., Frankel, V. H. & Reilly, D. T. The ultimate properties of bone tissue: the effects of yielding. J. Biomech. 5, 35–44 (1972).
Google Scholar
Deymier-Black, A. C. et al. Evolution of load transfer between hydroxyapatite and collagen during creep deformation of bone. Acta Biomater. 8, 253–261 (2012).
Google Scholar
Dorothee-Marx, M. F. et al. Dehydration of individual bovine trabeculae causes transition from ductile to quasi-brittle failure mode. J. Mech. Behav. Biomed. Mater. 87, 296–305 (2018).
Google Scholar
Giri, B., Tadano, S., Fujisaki, K. & Sasaki, N. Deformation of mineral crystals in cortical bone depending on structural anisotropy. Bone 44, 1111–1120 (2009).
Google Scholar
Ascenzi, M. G. & Lomovtsev, A. Collagen orientation patterns in human secondary osteons, quantified in the radial direction by confocal microscopy. J. Struct. Biol. 53, 14–30 (2006).
Google Scholar
Li, Z. W., Du, T. M., Ruan, C. S. & Niu, X. F. Bioinspired mineralized collagen scaffolds for bone tissue engineering. Bioact. Mater. 6, 1491–1511 (2021).
Google Scholar
Zimmermann, E. A. & Ritchie, R. O. Bone as a structural material. Adv. Healthc. Mater. 4, 1287–1304 (2015).
Google Scholar
Taylor, D. Microcrack growth parameters for compact bone deduced from stiffness variations. J. Biomech. 31, 587–592 (1998).
Google Scholar
Ma, Z. C. et al. Evaluation of nanoindentation load-depth curve of MEMS bridge structures by calculating the critical elastic-plastic bending deflections. Appl. Surf. Sci. 434, 1–10 (2018).
Google Scholar
Zimmermann, E. A., Launey, M. E. & Ritchie, R. O. The significance of crack-resistance curves to the mixed-mode fracture toughness of human cortical bone. Biomaterials 31, 5297–5305 (2010).
Google Scholar
Sasaki, N. & Odajima, S. Elongation mechanism of collagen fibrils and force–strain relations of tendon at each level of structural hierarchy. J. Biomech. 29, 1131–1136 (1996).
Google Scholar
Aifantis, K. E., Soer, W. A., De Hosson, J. T. M. & Willis, J. R. Interfaces within strain gradient plasticity: theory and experiments. Acta Mater. 54, 5077–5085 (2006).
Google Scholar
Akarapu, S., Zbib, H. M. & Bahr, D. F. Analysis of heterogeneous deformation and dislocation dynamics in single crystal micropillars under compression. Int. J. Plasticity 26, 239–257 (2010).
Google Scholar
Jennings, A. T., Burek, M. J. & Greer, J. R. Microstructure versus size: mechanical properties of electroplated single crystalline Cu nanopillars. Phys. Rev. Lett. 104, 135503 (2010).
Google Scholar

