Preloader

Aggravated stress fluctuation and mechanical size effects of nanoscale lamellar bone pillars

  • 1.

    Taylor, D., Hazenberg, J. & Lee, T. C. Living with cracks: damage and repair in human bone. Nat. Mater. 6, 263–268 (2007).

    CAS 
    Article 

    Google Scholar 

  • 2.

    Lucchini, R. et al. Role of damage mechanics in nanoindentation of lamellar bone at multiple sizes: experiments and numerical modelling. J. Mech. Behav. Biomed. 4, 1852–1863 (2011).

    Article 

    Google Scholar 

  • 3.

    Currey, J. D. Hierarchies in biomineral structures. Science 309, 253–254 (2005).

    CAS 
    Article 

    Google Scholar 

  • 4.

    Fratzl, P. & Weinkamer, R. Nature’s hierarchical materials. Prog. Mater. Sci. 52, 1263–1334 (2007).

    CAS 
    Article 

    Google Scholar 

  • 5.

    Zimmermann, E. A., Launey, M. E., Barth, H. D. & Ritchie, R. O. Mixed-mode fracture of human cortical bone. Biomaterials 30, 5877–5884 (2009).

    CAS 
    Article 

    Google Scholar 

  • 6.

    Silva, F. G. A., Moura, M. F. S. F. & Dourado, N. Mixed-mode I-II fracture characterization of human cortical bone using the single leg bending test. J. Mech. Behav. Biom. 54, 72–81 (2016).

    CAS 
    Article 

    Google Scholar 

  • 7.

    Ma, Z. C., Qiang, Z. F., Zhao, H. W., Piao, H. L. & Ren, L. Q. Mechanical properties of cortical bones related to temperature and orientation of Haversian canals. Mater. Res. Express 7, 015408 (2020).

    CAS 
    Article 

    Google Scholar 

  • 8.

    Michael, J. K., Devon, L. A., Amanda, M. A. & Kemper, A. R. Effects of sex, age, and two loading rates on the tensile material properties of human rib cortical bone. J. Mech. Behav. Biomed. 102, 10341 (2020).

    Google Scholar 

  • 9.

    Zioupos, P. & Currey, J. D. Changes in the stiffness, strength, and toughness of human cortical bone with age. Bone 22, 57–66 (1998).

    CAS 
    Article 

    Google Scholar 

  • 10.

    Rho, J. Y., Zioupos, P., Currey, J. D. & Pharr, G. M. Microstructural elasticity and regional heterogeneity in human femoral bone of various ages examined by nano-indentation. J. Biomech. 35, 189–198 (2002).

    CAS 
    Article 

    Google Scholar 

  • 11.

    Giannoudis, P., Tzioupis, C., Almalki, T. & Buckley, R. Fracture healing in osteoporotic fractures: is it really different? A basic science perspective. Injury 38, S90–S99 (2007).

    Article 

    Google Scholar 

  • 12.

    Wachter, N. J. et al. Correlation of bone mineral density with strength and microstructural parameters of cortical bone in vitro. Bone 31, 90–95 (2002).

    CAS 
    Article 

    Google Scholar 

  • 13.

    Schwiedrzik, J. et al. Nanoscale deformation mechanisms and yield properties of hydrated bone extracellular matrix. Acta Biomater. 60, 302–314 (2017).

    CAS 
    Article 

    Google Scholar 

  • 14.

    Gustafsson, A. et al. Linking multiscale deformation to microstructure in cortical bone using in situ loading, digital image correlation, and synchrotron X-ray scattering. Acta Biomater. 69, 323–331 (2018).

    Article 

    Google Scholar 

  • 15.

    Nalla, R. K., Kinney, J. H. & Ritchie, R. O. Mechanistic fracture criteria for the failure of human cortical bone. Nat. Mater. 2, 164–168 (2003).

    CAS 
    Article 

    Google Scholar 

  • 16.

    Wang, Y. Y., Naleway, S. E. & Wang, B. Biological and bioinspired materials: structure leading to functional and mechanical performance. Bioact. Mater. 5, 745–757 (2020).

    Article 

    Google Scholar 

  • 17.

    Grünewald, T. A. et al. Mapping the 3D orientation of nanocrystals and nanostructures in human bone: Indications of novel structural features. Sci. Adv. 6, eaba4171 (2020).

    Article 
    CAS 

    Google Scholar 

  • 18.

    Rho, J. Y., Zioupos, P., Currey, J. D. & Pharr, G. M. Variations in the individual thick lamellar properties within osteons by nanoindentation. Bone 25, 295–300 (1999).

    CAS 
    Article 

    Google Scholar 

  • 19.

    Oliver, W. C. & Pharr, G. M. An improved technique for determining hardness and Young’s modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564–1583 (1992).

    CAS 
    Article 

    Google Scholar 

  • 20.

    Ma, Z. C. et al. Deformation behavior of micro-indentation defects under uniaxial and biaxial loads. Rev. Sci. Instrum. 86, 095112 (2015).

    Article 
    CAS 

    Google Scholar 

  • 21.

    Zhang, A. R., Zhang, S. & Bian, C. R. Mechanical properties of bovine cortical bone based on the automated ball indentation technique and graphics processing method. J. Mech. Behav. Biomed. Mater. 78, 321–328 (2018).

    Article 

    Google Scholar 

  • 22.

    Tai, K., Dao, M., Suresh, S., Palazoglu, A. & Ortiz, C. Nanoscale heterogeneity promotes energy dissipation in bone. Nat. Mater. 6, 454–462 (2007).

    CAS 
    Article 

    Google Scholar 

  • 23.

    Weiner, S., Traub, W. & Wagner, H. D. Lamellar bone: structure-function relations. J. Struct. Biol. 126, 241–255 (1999).

    CAS 
    Article 

    Google Scholar 

  • 24.

    Yao, H. M., Dao, M., Carnelli, D., Tai, K. S. & Ortiz, C. Size-dependent heterogeneity benefits the mechanical performance of bone. J. Mech. Phys. Solids 59, 64–74 (2011).

    Article 

    Google Scholar 

  • 25.

    Koester, K. J., Ager, J. W. & Rtchie, R. O. The true toughness of human cortical bone measured with realistically short cracks. Nat. Mater. 7, 672–677 (2008).

    CAS 
    Article 

    Google Scholar 

  • 26.

    Nalla, R. K., Kruzic, J. J., Kinney, J. H. & Ritchie, R. O. Effect of aging on the toughness of human cortical bone: evaluation by R-curves. Bone 35, 1240–1246 (2004).

    CAS 
    Article 

    Google Scholar 

  • 27.

    Rho, J. Y., Kuhn-Spearing, L. & Zioupos, P. Mechanical properties and the hierarchical structure of bone. Med. Eng. Phys. 20, 92–102 (1998).

    CAS 
    Article 

    Google Scholar 

  • 28.

    Ma, Z. C. et al. A novel tensile device for in situ scanning electron microscope mechanical testing. Exp. Tech. 39, 3–11 (2015).

    Article 

    Google Scholar 

  • 29.

    Alderete, N., Zaheri, A. & Espinosa, H. D. A novel in situ experiment to investigate wear mechanisms in biomaterials. Exp. Mech. 59, 659–667 (2019).

    Article 

    Google Scholar 

  • 30.

    Hazenberg, J. G., Taylor, D. & Lee, T. C. Mechanisms of short crack growth at constant stress in bone. Biomaterials 27, 2114–2122 (2006).

    CAS 
    Article 

    Google Scholar 

  • 31.

    Nalla, R. K., Kruzic, J. J., Kinney, J. H. & Ritchie, R. O. Aspects of in vitro fatigue in human cortical bone: time and cycle dependent crack growth. Biomaterials 26, 2183–2195 (2005).

    CAS 
    Article 

    Google Scholar 

  • 32.

    Gupta, H. S. et al. Cooperative deformation of mineral and collagen in bone at the nanoscale. Proc. Natl Acad. Sci. USA 103, 17741–17746 (2006).

    CAS 
    Article 

    Google Scholar 

  • 33.

    Gupta, H. S. et al. Nanoscale deformation mechanisms in bone. Nano. Lett. 5, 2108–2011 (2005).

    CAS 
    Article 

    Google Scholar 

  • 34.

    Schwiedrzik, J. et al. In situ micropillar compression reveals superior strength and ductility but an absence of damage in lamellar bone. Nat. Mater. 13, 740–747 (2014).

    CAS 
    Article 

    Google Scholar 

  • 35.

    Tertuliano, O. A. & Greer, J. R. The nanocomposite nature of bone drives its strength and damage resistance. Nat. Mater. 15, 1195–1202 (2016).

    CAS 
    Article 

    Google Scholar 

  • 36.

    Peterlik, H., Roschger, P., Klaushoffer, K. & Fratzl, P. From brittle to ductile fracture of bone. Nat. Mater. 5, 52–55 (2006).

    CAS 
    Article 

    Google Scholar 

  • 37.

    Qiao, J. W., Zhang, Y. P. & Liaw, K. Serrated flow kinetics in a Zr-based bulk metallic glass. Intermetallics 18, 2057–2064 (2010).

    CAS 
    Article 

    Google Scholar 

  • 38.

    Leamy, H. J., Wang, T. T. & Chen, H. S. Plastic flow and fracture of metallic glass. Metall. Trans. 3, 699–708 (1972).

    CAS 
    Article 

    Google Scholar 

  • 39.

    Ma, Z. C. et al. Cyclic stress induced surface nanocrystallization adjacent to indentation edge of Zr-based bulk metallic glass at room temperature. Appl. Surf. Sci. 506, 145044 (2020).

    CAS 
    Article 

    Google Scholar 

  • 40.

    Reznikov, N., Almany-Magal, R., Shahar, R. & Weiner, S. Three-dimensional imaging of collagen fibril organization in rat circumferential lamellar bone using a dual beam electron microscope reveals ordered and disordered sub-lamellar structures. Bone 52, 676–683 (2013).

    CAS 
    Article 

    Google Scholar 

  • 41.

    Huang, W. et al. A natural impact-resistant bicontinuous composite nanoparticle coating. Nat. Mater. 19, 1236–1243 (2020).

    CAS 
    Article 

    Google Scholar 

  • 42.

    Zhang, G. J. et al. The effect of formalin preservation time and temperature on the material properties of bovine gemoral cortical bone tissue. Ann. Biomed. Eng. 47, 937–952 (2019).

    Article 

    Google Scholar 

  • 43.

    Lim, Y. C., Altman, K. J., Farson, D. F. & Flores, K. M. Micropillar fabrication on bovine cortical bone by direct-write femtosecond laser ablation. J. Biomed. Opt. 14, 064021 (2009).

    Article 

    Google Scholar 

  • 44.

    ASTM: E9-89a. Standard Test Methods of Compression Testing of Metallic Materials at Room Temperature (ASTM, 2020).

  • 45.

    Kochetkova, T. et al. Combining polarized Raman spectroscopy and micropillar compression to study microscale structure-property relationships in mineralized tissues. Acta Biomater. 119, 390–404 (2021).

    CAS 
    Article 

    Google Scholar 

  • 46.

    Wang, Y. C. et al. In situ TEM study of deformation-induced crystalline-to-amorphous transition in silicon. NPG Asia Mater. 8, e291 (2016).

    CAS 
    Article 

    Google Scholar 

  • 47.

    Burstein, A. H., Currey, J. D., Frankel, V. H. & Reilly, D. T. The ultimate properties of bone tissue: the effects of yielding. J. Biomech. 5, 35–44 (1972).

    CAS 
    Article 

    Google Scholar 

  • 48.

    Deymier-Black, A. C. et al. Evolution of load transfer between hydroxyapatite and collagen during creep deformation of bone. Acta Biomater. 8, 253–261 (2012).

    CAS 
    Article 

    Google Scholar 

  • 49.

    Dorothee-Marx, M. F. et al. Dehydration of individual bovine trabeculae causes transition from ductile to quasi-brittle failure mode. J. Mech. Behav. Biomed. Mater. 87, 296–305 (2018).

    Article 
    CAS 

    Google Scholar 

  • 50.

    Giri, B., Tadano, S., Fujisaki, K. & Sasaki, N. Deformation of mineral crystals in cortical bone depending on structural anisotropy. Bone 44, 1111–1120 (2009).

    Article 

    Google Scholar 

  • 51.

    Ascenzi, M. G. & Lomovtsev, A. Collagen orientation patterns in human secondary osteons, quantified in the radial direction by confocal microscopy. J. Struct. Biol. 53, 14–30 (2006).

    Article 
    CAS 

    Google Scholar 

  • 52.

    Li, Z. W., Du, T. M., Ruan, C. S. & Niu, X. F. Bioinspired mineralized collagen scaffolds for bone tissue engineering. Bioact. Mater. 6, 1491–1511 (2021).

    CAS 
    Article 

    Google Scholar 

  • 53.

    Zimmermann, E. A. & Ritchie, R. O. Bone as a structural material. Adv. Healthc. Mater. 4, 1287–1304 (2015).

    CAS 
    Article 

    Google Scholar 

  • 54.

    Taylor, D. Microcrack growth parameters for compact bone deduced from stiffness variations. J. Biomech. 31, 587–592 (1998).

    CAS 
    Article 

    Google Scholar 

  • 55.

    Ma, Z. C. et al. Evaluation of nanoindentation load-depth curve of MEMS bridge structures by calculating the critical elastic-plastic bending deflections. Appl. Surf. Sci. 434, 1–10 (2018).

    CAS 
    Article 

    Google Scholar 

  • 56.

    Zimmermann, E. A., Launey, M. E. & Ritchie, R. O. The significance of crack-resistance curves to the mixed-mode fracture toughness of human cortical bone. Biomaterials 31, 5297–5305 (2010).

    CAS 
    Article 

    Google Scholar 

  • 57.

    Sasaki, N. & Odajima, S. Elongation mechanism of collagen fibrils and force–strain relations of tendon at each level of structural hierarchy. J. Biomech. 29, 1131–1136 (1996).

    CAS 
    Article 

    Google Scholar 

  • 58.

    Aifantis, K. E., Soer, W. A., De Hosson, J. T. M. & Willis, J. R. Interfaces within strain gradient plasticity: theory and experiments. Acta Mater. 54, 5077–5085 (2006).

    CAS 
    Article 

    Google Scholar 

  • 59.

    Akarapu, S., Zbib, H. M. & Bahr, D. F. Analysis of heterogeneous deformation and dislocation dynamics in single crystal micropillars under compression. Int. J. Plasticity 26, 239–257 (2010).

    CAS 
    Article 

    Google Scholar 

  • 60.

    Jennings, A. T., Burek, M. J. & Greer, J. R. Microstructure versus size: mechanical properties of electroplated single crystalline Cu nanopillars. Phys. Rev. Lett. 104, 135503 (2010).

    Article 
    CAS 

    Google Scholar 

  • Source link