Preloader

A success targeted nano delivery to lung cancer cells with multi-walled carbon nanotubes conjugated to bromocriptine

  • 1.

    Wang, X. et al. The prospective value of dopamine receptors on bio-behavior of tumor. J. Cancer 10, 1622 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 2.

    Noble, E. P. The DRD2 gene in psychiatric and neurological disorders and its phenotypes. Pharmacogenomics 1, 309–333 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • 3.

    Grossrubatscher, E. et al. High expression of dopamine receptor subtype 2 in a large series of neuroendocrine tumors. Cancer Biol. Ther. 7, 1970–1978 (2008).

    PubMed 

    Google Scholar 

  • 4.

    Sachlos, E. et al. Identification of drugs including a dopamine receptor antagonist that selectively target cancer stem cells. Cell 149, 1284–1297 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • 5.

    Shin, J. H. et al. Sertindole, a potent antagonist at dopamine D2 receptors, induces autophagy by increasing reactive oxygen species in SH-SY5Y neuroblastoma cells. Biol. Pharm. Bull. 35, 1069–1075 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • 6.

    Yang, Y. et al. Repositioning dopamine D2 receptor agonist bromocriptine to enhance docetaxel chemotherapy and treat bone metastatic prostate cancer. Mol. Cancer Ther. 17, 1859–1870 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 7.

    Qun, H. & Yuan, L.-B. Dopamine inhibits proliferation, induces differentiation and apoptosis of K562 leukaemia cells. Chin. Med. J. 120, 970–974 (2007).

    Google Scholar 

  • 8.

    Ganguly, S. et al. Dopamine, by acting through its D2 receptor, inhibits insulin-like growth factor-I (IGF-I)-induced gastric cancer cell proliferation via up-regulation of Krüppel-like factor 4 through down-regulation of IGF-IR and AKT phosphorylation. Am. J. Pathol. 177, 2701–2707 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 9.

    De Leeuw Van Weenen, J. et al. The dopamine receptor D2 agonist bromocriptine inhibits glucose-stimulated insulin secretion by direct activation of the alpha2-adrenergic receptors in beta cells. Biochem. Pharmacol. 20, 1827–1836 (2010).

    Google Scholar 

  • 10.

    Liu, X. et al. The mechanism and pathways of dopamine and dopamine agonists in prolactinomas. Front. Endocrinol. 9, 768 (2019).

    Google Scholar 

  • 11.

    Shaikhpoor, M., Ahangari, G., Sadeghizadeh, M., Khosravi, A. & Derakhshani Deilami, G. Significant changes in D2-like dopamine gene receptors expression associated with non-small-cell lung cancer: could it be of potential use in the design of future therapeutic strategies?. Curr. Cancer Ther. Rev. 8, 304–310 (2012).

    CAS 

    Google Scholar 

  • 12.

    Sheikhpour, M., Ahangari, G., Sadeghizadeh, M. & Deezagi, A. A novel report of apoptosis in human lung carcinoma cells using selective agonist of D2-like dopamine receptors: a new approach for the treatment of human non-small cell lung cancer. Int. J. Immunopathol. Pharmacol. 26, 393–402 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 13.

    Sheikhpour, M. et al. Co-administration of curcumin and bromocriptine nano-liposomes for induction of apoptosis in lung cancer cells. Iran. Biomed. J. 24, 24 (2020).

    PubMed 

    Google Scholar 

  • 14.

    Sheikhpour, M., Barani, L. & Kasaeian, A. Biomimetics in drug delivery systems: A critical review. J. Control. Release 253, 97–109 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 15.

    Sheikhpour, M., Golbabaie, A. & Kasaeian, A. Carbon nanotubes: a review of novel strategies for cancer diagnosis and treatment. Mater. Sci. Eng. C 76, 1289–1304 (2017).

    CAS 

    Google Scholar 

  • 16.

    Hao, H., Chen, Y. & Wu, M. Biomimetic nanomedicine toward personalized disease theranostics. Nano Res. 14, 2491–2511. https://doi.org/10.1007/s12274-020-3265-z (2021).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 17.

    Li, Z. et al. The toxicity of hydroxylated and carboxylated multi-walled carbon nanotubes to human endothelial cells was not exacerbated by ER stress inducer. Chin. Chem. Lett. 30, 582–586. https://doi.org/10.1016/j.cclet.2018.12.011 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 18.

    Yang, Q. et al. Pre-incubated with BSA-complexed free fatty acids alters ER stress/autophagic gene expression by carboxylated multi-walled carbon nanotube exposure in THP-1 macrophages. Chin. Chem. Lett. 30, 1224–1228 (2019).

    CAS 

    Google Scholar 

  • 19.

    Zomorodbakhsh, S., Abbasian, Y., Naghinejad, M. & Sheikhpour, M. The effects study of isoniazid conjugated multi-wall carbon nanotubes nanofluid on Mycobacterium tuberculosis. Int. J. Nanomed. 15, 5901–5909. https://doi.org/10.2147/IJN.S251524 (2020).

    CAS 
    Article 

    Google Scholar 

  • 20.

    Stockert, J. C., Blázquez-Castro, A., Cañete, M., Horobin, R. W. & Villanueva, A. MTT assay for cell viability: Intracellular localization of the formazan product is in lipid droplets. Acta Histochem. 114, 785–796. https://doi.org/10.1016/j.acthis.2012.01.006 (2012).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 21.

    Babaei, H. et al. Increased circulation mobilization of endothelial progenitor cells in preterm infants with retinopathy of prematurity. J. Cell. Biochem. 119, 6575–6583 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 22.

    Siavashi, V., Nassiri, S. M., Rahbarghazi, R., Vafaei, R. & Sariri, R. ECM-dependence of endothelial progenitor cell features. J. Cell. Biochem. 117, 1934–1946 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 23.

    Brzeziński, M. & Biela, T. Polylactide nanocomposites with functionalized carbon nanotubes and their stereocomplexes: A focused review. Mater. Lett. 121, 244–250 (2014).

    Google Scholar 

  • 24.

    Jiang, H., Zhao, P. J., Su, D., Feng, J. & Ma, S. L. Paris saponin I induces apoptosis via increasing the Bax/Bcl-2 ratio and caspase-3 expression in gefitinib-resistant non-small cell lung cancer in vitro and in vivo. Mol. Med. Rep. 9, 2265–2272 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 25.

    Mu, Q., Broughton, D. L. & Yan, B. Endosomal leakage and nuclear translocation of multiwalled carbon nanotubes: developing a model for cell uptake. Nano Lett. 9, 4370–4375 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 26.

    Öner, D. et al. Differences in MWCNT-and SWCNT-induced DNA methylation alterations in association with the nuclear deposition. Part. Fibre Toxicol. 15, 1–19 (2018).

    Google Scholar 

  • 27.

    Hoeppner, L. H. et al. Dopamine D2 receptor agonists inhibit lung cancer progression by reducing angiogenesis and tumor infiltrating myeloid derived suppressor cells. Mol. Oncol. 9, 270–281 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 28.

    Kendall, R. T., Rivera‐Odife, E., Everett, P. B. & Senogles, S. E. (Wiley Online Library, 2006).

  • 29.

    Basu, S. & Dasgupta, P. S. Dopamine, a neurotransmitter, influences the immune system. J. Neuroimmunol. 102, 113–124 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • 30.

    Zhang, X., Liu, Q., Liao, Q. & Zhao, Y. Potential roles of peripheral dopamine in tumor immunity. J. Cancer 8, 2966 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 31.

    Roney, M. S. I. & Park, S.-K. Antipsychotic dopamine receptor antagonists, cancer, and cancer stem cells. Arch. Pharmacal. Res. 41, 384–408 (2018).

    CAS 

    Google Scholar 

  • 32.

    Borcherding, D. C. et al. Expression and therapeutic targeting of dopamine receptor-1 (D1R) in breast cancer. Oncogene 35, 3103–3113 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 33.

    Roy, S. et al. Activation of D2 dopamine receptors in CD133+ ve cancer stem cells in non-small cell lung carcinoma inhibits proliferation, clonogenic ability, and invasiveness of these cells. J. Biol. Chem. 292, 435–445 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 34.

    Campa, D. et al. Polymorphisms of dopamine receptor/transporter genes and risk of non-small cell lung cancer. Lung Cancer 56, 17–23 (2007).

    PubMed 

    Google Scholar 

  • 35.

    Wu, X.-Y. et al. Overexpressed D2 dopamine receptor inhibits non-small cell lung cancer progression through inhibiting NF-κB signaling pathway. Cell. Physiol. Biochem. 48, 2258–2272 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 36.

    Esposito, E. et al. Solid lipid nanoparticles as delivery systems for bromocriptine. Pharm. Res. 25, 1521–1530 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • 37.

    Seo, E.-J., Sugimoto, Y., Greten, H. J. & Efferth, T. Repurposing of bromocriptine for cancer therapy. Front. Pharmacol. 9, 1030 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 38.

    Li, Q. et al. Dopamine receptor D2S gene transfer improves the sensitivity of GH3 rat pituitary adenoma cells to bromocriptine. Mol. Cell. Endocrinol. 382, 377–384 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 39.

    Yan, H. et al. Toxicity of carbon nanotubes as anti-tumor drug carriers. Int. J. Nanomed. 14, 10179 (2019).

    CAS 

    Google Scholar 

  • 40.

    Rastogi, V. et al. Carbon nanotubes: an emerging drug carrier for targeting cancer cells. J. Drug Deliv. 20, 14 (2014).

    Google Scholar 

  • 41.

    Xin, Y., Yin, M., Zhao, L., Meng, F. & Luo, L. Recent progress on nanoparticle-based drug delivery systems for cancer therapy. Cancer Biol. Med. 14, 228 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 42.

    Tran, S., DeGiovanni, P.-J., Piel, B. & Rai, P. Cancer nanomedicine: a review of recent success in drug delivery. Clin. Transl. Med. 6, 1–21 (2017).

    Google Scholar 

  • 43.

    AbouAitah, K. et al. Targeted nano-drug delivery of colchicine against colon cancer cells by means of mesoporous silica nanoparticles. Cancers 12, 144 (2020).

    CAS 
    PubMed Central 

    Google Scholar 

  • 44.

    Santos, T. et al. Sequential administration of carbon nanotubes and near-infrared radiation for the treatment of gliomas. Front. Oncol. 4, 180 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 45.

    Wang, L. et al. Synergistic anticancer effect of RNAi and photothermal therapy mediated by functionalized single-walled carbon nanotubes. Biomaterials 34, 262–274 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 46.

    Sheikhpour, M., Ahangari, G. & Sadeghizadeh, M. (AACR, 2013).

  • 47.

    Jiang, Y. et al. Modulation of apoptotic pathways of macrophages by surface-functionalized multi-walled carbon nanotubes. PLoS One 8, e65756 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 48.

    Sato, Y. et al. Influence of length on cytotoxicity of multi-walled carbon nanotubes against human acute monocytic leukemia cell line THP-1 in vitro and subcutaneous tissue of rats in vivo. Mol. BioSyst. 1, 176–182 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • 49.

    Singh, R. et al. Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers. Proc. Natl. Acad. Sci. 103, 3357–3362 (2006).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 50.

    Rajarajeswari, M., Iyakutti, K., Lakshmi, I., Rajeswarapalanichamy, R. & Kawazoe, Y. Functionalized single-walled carbon nanotube (5, 0) as a carrier for isoniazid—A tuberculosis drug. Int. J. Comput. Mater. Sci. Eng. 4, 1550014 (2015).

    CAS 

    Google Scholar 

  • 51.

    Attia, M. F., Anton, N., Wallyn, J., Omran, Z. & Vandamme, T. F. An overview of active and passive targeting strategies to improve the nanocarriers efficiency to tumour sites. J. Pharm. Pharmacol. 71, 1185–1198 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Source link