Preloader

A novel thermostable prokaryotic fucoidan active sulfatase PsFucS1 with an unusual quaternary hexameric structure

  • 1.

    Bilan, M. I. et al. Structure of a fucoidan from the brown seaweed Fucus evanescens C. Ag. Carbohydr. Res. 37, 719–730 (2002).

    Article 

    Google Scholar 

  • 2.

    Thinh, P. D. et al. Structural characteristics and anticancer activity of fucoidan from the brown alga Sargassum mcclurei. Mar. Drugs 11, 1456–1476 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 3.

    Ale, M. T., Mikkelsen, J. D. & Meyer, A. S. Important determinants for fucoidan bioactivity: A critical review of structure-function relations and extraction methods for fucose-containing sulfated polysaccharides from brown seaweeds. Mar. Drugs 9, 2106–2130 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 4.

    Torres, M. D. et al. Fucoidans: The importance of processing on their anti-tumoral properties. Algal Res. 45, 101748 (2020).

    Article 

    Google Scholar 

  • 5.

    Silchenko, A. S. et al. Structure, enzymatic transformation, anticancer activity of fucoidan and sulphated fucooligosaccharides from Sargassum horneri. Carbohydr. Polym. 175, 654–660 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 6.

    Dörschmann, P. et al. Effects of a newly developed enzyme-assisted extraction method on the biological activities of fucoidans in ocular cells. Mar. Drugs 18, 282 (2020).

    PubMed Central 
    Article 
    CAS 
    PubMed 

    Google Scholar 

  • 7.

    Blondin, C., Fischer, E., Boisson-Vidal, C., Kazatchkine, M. D. & Jozefonvicz, J. Inhibition of complement activation by natural sulfated polysaccharides (fucans) from brown seaweed. Mol. Immunol. 31, 247–253 (1994).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 8.

    Nardella, A. et al. Anticoagulant low molecular weight fucans produced by radical process and ion exchange chromatography of high molecular weight fucans extracted from the brown seaweed Ascophyllum nodosum. Carbohydr. Res. 19, 201–208 (1996).

    Article 

    Google Scholar 

  • 9.

    Koyanagi, S., Tanigawa, N., Nakagawa, H., Soeda, S. & Shimeno, H. Oversulfation of fucoidan enhances its anti-angiogenic and antitumor activities. Biochem. Pharmacol. 15, 173–179 (2003).

    Article 

    Google Scholar 

  • 10.

    Sichert, A. et al. Verrucomicrobia use hundreds of enzymes to digest the algal polysaccharide fucoidan. Nat. Microbiol. 5, 1026–1039 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 11.

    Michel, G. & Czjzek, M. Polysaccharide-degrading enzymes from marine bacteria. In Marine Enzymes for Biocatalysis: Sources, Biocatalytic Characteristics and Bioprocesses of Marine Enzymes (ed. Trincone, A.) 429–464 (Elsevier, 2013).

    Chapter 

    Google Scholar 

  • 12.

    Colin, S. et al. Cloning and biochemical characterization of the fucanase FcnA: Definition of a novel glycoside hydrolase family specific for sulfated fucans. Glycobiology 16, 1021–1032 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 13.

    Silchenko, A. S. et al. Expression and biochemical characterization and substrate specificity of the fucoidanase from Formosa algae. Glycobiology 27, 254–263 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 14.

    Vuillemin, M. et al. Functional characterization of a new GH107 endo-α-(1,4)-fucoidanase from the marine bacterium Formosa haliotis. Mar. Drugs 18, 562 (2020).

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 

  • 15.

    Takayama, M., Koyama, N., Sakai, T. & Kato, I. Enzymes capable of degrading a sulfated-fucose-containing polysaccharide and their encoding genes. US Patent 6489155 B1 (2002).

  • 16.

    Shen, J., Chang, Y., Zhang, Y., Mei, X. & Xue, C. Discovery and characterization of an endo-1,3-fucanase from marine bacterium Wenyingzhuangia fucanilytica: A novel glycoside hydrolase family. Front. Microbiol. 11, 1674 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 17.

    Barbeyron, T. et al. Matching the diversity of sulfated biomolecules: Creation of a classification database for sulfatases reflecting their substrate specificity. PLoS ONE 11(10), e0164846 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 18.

    Hettle, A. G. et al. The molecular basis of polysaccharide sulfatase activity and a nomenclature for catalytic subsites in this class of enzyme. Structure 26, 747–758 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 19.

    Hanson, S. R., Best, M. D. & Wong, C. H. Sulfatases: Structure, mechanism, biological activity, inhibition, and synthetic utility. Angew. Chem. Int. Ed. 43, 5736–5763 (2004).

    CAS 
    Article 

    Google Scholar 

  • 20.

    Cosma, M. P. et al. The multiple sulfatase deficiency gene encodes an essential and limiting factor for the activity of sulfatases. Cell 113, 445–456 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 21.

    Dierks, T. et al. Posttranslational formation of formylglycine in prokaryotic sulfatases by modification of either cysteine or serine. J. Biol. Chem. 273, 25560–25564 (1998).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 22.

    Kim, D. E. et al. Purification and characterization of the recombinant arylsulfatase cloned from Pseudoalteromonas carrageenovora. Protein Expr. Purif. 39, 107–115 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 23.

    Gao, C., Jin, M., Yi, Z. & Zeng, R. Characterization of a recombinant thermostable arylsulfatase from deep-sea bacterium Flammeovirga pacifica. J. Microbiol. Biotechnol. 25, 1894–1901 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 24.

    Jung, K. T. et al. Identification of the first archaeal arylsulfatase from Pyrococcus furiosus and its application to desulfatation of agar. Biotechnol. Bioprocess Eng. 17, 1140–1146 (2012).

    CAS 
    Article 

    Google Scholar 

  • 25.

    Lee, D.-G., Shin, J. G., Jeon, M. J. & Lee, S.-H. Heterologous expression and characterization of a recombinant thermophilic arylsulfatase from Thermotoga maritima. Biotechnol. Bioprocess Eng. 18, 897–902 (2013).

    CAS 
    Article 

    Google Scholar 

  • 26.

    Préchoux, A., Genicot, S., Rogniaux, H. & Helbert, W. Controlling carrageenan structure using a novel formylglycine-dependent sulfatase, an endo-4S-iota-carrageenan sulfatase. Mar. Biotechnol. 15, 265–274 (2013).

    Article 
    CAS 

    Google Scholar 

  • 27.

    Préchoux, A. & Helbert, W. Preparation and detailed NMR analyses of a series of oligo-α- carrageenans. Carbohydr. Polym. 101, 864–870 (2014).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 28.

    Genicot, S. M. et al. Discovery of a novel iota carrageenan sulfatase isolated from the marine bacterium Pseudoalteromonas carrageenovora. Front. Chem. 2, 67 (2014).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 29.

    Thanassi, N. M. & Nakada, H. I. Enzymic degradation of fucoidan by enzymes from the hepatopancreas of abalone, Haliotus species. Arch. Biochem. Biophys. 118, 172–177 (1967).

    CAS 
    Article 

    Google Scholar 

  • 30.

    Sasaki, K. et al. Partial purification and characterization of an enzyme releasing 2-sulfo-α-l- fucopyranose from 2-sulfo-α-l-fucopyranosyl-(1→2) pyridylaminated fucose from a sea urchin, Strongylocentrotus nudus. Biosci. Biotechnol. Biochem. 60, 666–668 (1996).

    CAS 
    Article 

    Google Scholar 

  • 31.

    Daniel, R. et al. Regioselective desulfation of sulfated L-fucopyranoside by a new sulfoesterase from the marine mollusk Pecten maximus: Application to the structural study of algal fucoidan (Ascophyllum nodosum). Eur. J. Biochem. 268, 5617–5626 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 32.

    Lloyd, P. F. & Forrester, P. F. Desulphation of L-fucose monosulphates by an enzyme from Patella vulgata. Biochem. J. 124, 21 (1971).

    Article 

    Google Scholar 

  • 33.

    Furukawa, S., Fujikawa, T., Koga, D. & Ide, A. Production of fucoidan-degrading enzymes, fucoidanase, and fucoidan sulfatase by Vibrio sp. N-5. Nippon suisan Gakk. 58, 1499–1503 (1992).

    CAS 
    Article 

    Google Scholar 

  • 34.

    Wegner, C. E. et al. Expression of sulfatases in Rhodopirellula baltica and the diversity of sulfatases in the genus Rhodopirellula. Mar. Genom. 9, 51–61 (2013).

    Article 

    Google Scholar 

  • 35.

    Sakai, T., Ishizuka, K., Shimanaka, K., Ikai, K. & Kato, I. Structures of oligosaccharides derived from Cladosiphon okamuranus fucoidan by digestion with marine bacterial enzymes. Mar. Biotechnol. 5, 536–544 (2003).

    CAS 
    Article 

    Google Scholar 

  • 36.

    Silchenko, A. S. et al. Fucoidan sulfatases from marine bacterium Wenyingzhuangia fucanilytica CZ1127T. Biomolecules 8, 98 (2018).

    PubMed Central 
    Article 
    CAS 
    PubMed 

    Google Scholar 

  • 37.

    Chang, Y. et al. Isolation and characterization of a sea cucumber fucoidan-utilizing marine bacterium. Lett. Appl. Microbiol. 50, 301–307 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 38.

    Beil, S. et al. Purification and characterization of the arylsulfatase synthesized by Pseudomonas aeruginosa PAO during growth in sulfate-free medium and cloning of the arylsulfatase gene (atsA). Eur. J. Biochem. 229, 385–394 (1995).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 39.

    Boltes, I. et al. 1.3 Å structure of arylsulfatase from Pseudomonas aeruginosa establishes the catalytic mechanism of sulfate ester cleavage in the sulfatase family. Structure 9, 483–491 (2001).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 40.

    Cao, H. T. T. et al. Novel enzyme actions for sulphated galactofucan depolymerisation and a new engineering strategy for molecular stabilisation of fucoidan degrading enzymes. Mar. Drugs 16, 422 (2018).

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 

  • 41.

    Li, W. F., Zhou, X. X. & Lu, P. Structural features of thermozymes. Biotechnol. Adv. 23, 271–281 (2005).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 42.

    Mangiagalli, M. et al. The co-existence of cold activity and thermal stability in an Antarctic GH42 β-galactosidase relies on its hexameric quaternary arrangement. FEBS J. 228, 546–565 (2020).

    Google Scholar 

  • 43.

    Chen, M. C., Hsu, W. L., Hwang, P. A. & Chou, T. C. Low molecular weight fucoidan inhibits tumor angiogenesis through downregulation of HIF-1/VEGF signaling under hypoxia. Mar. Drugs 13, 4436–4451 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 44.

    Ermakova, S. P. et al. Structure, chemical and enzymatic modification, and anticancer activity of polysaccharides from the brown alga Turbinaria ornata. J. Appl. Phycol. 28, 2495–2505 (2016).

    CAS 
    Article 

    Google Scholar 

  • 45.

    Nguyen, T. T. et al. Enzyme-assisted fucoidan extraction from brown macroalgae Fucus distichus subsp. evanescens and Saccharina latissima. Mar. Drugs 18, 246–263 (2020).

    Article 
    CAS 

    Google Scholar 

  • 46.

    Silchenko, A. S. et al. A simple plate method for the screening and detection of fucoidanases. Achiev. Life Sci. 9, 104–106 (2015).

    Google Scholar 

  • 47.

    Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 17, 10–12 (2011).

    Article 

    Google Scholar 

  • 48.

    Bushnell, B. BBMap: A fast, accurate, splice-aware aligner. Joint Genome Instritute, Department of Energy (2014).

  • 49.

    Boisvert, S., Raymond, F., Godzaridis, É., Laviolette, F. & Corbeil, J. Ray Meta: Scalable de novo metagenome assembly and profiling. Genome Biol. 13, R122 (2012).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 50.

    Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 51.

    Kang, D. D., Froula, J., Egan, R. & Wang, Z. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ 3, e1165 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 52.

    Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: Assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 53.

    Wu, M. & Scott, A. J. Phylogenomic analysis of bacterial and archaeal sequences with AMPHORA2. Bioinformatics 28, 1033–1034 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 54.

    Yin, Y. et al. DbCAN: A web resource for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 40, 445–451 (2012).

    Article 
    CAS 

    Google Scholar 

  • 55.

    Seemann, T. Prokka: Rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).

    CAS 
    Article 

    Google Scholar 

  • 56.

    Jones, P. et al. InterProScan 5: Genome-scale protein function classification. Bioinformatics 30, 1236–1240 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 57.

    Mitchell, A. L. et al. InterPro in 2019: Improving coverage, classification and access to protein sequence annotations. Nucleic Acids Res. 47, 351–360 (2019).

    Article 
    CAS 

    Google Scholar 

  • 58.

    Petersen, T. N., Brunak, S., Von Heijne, G. & Nielsen, H. SignalP 4.0: Discriminating signal peptides from transmembrane regions. Nat. Methods 8, 785–786 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 59.

    Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 60.

    Combet, C., Blanchet, C., Geourjon, C. & Deléage, G. NPS@: Network protein sequence analysis. Trends Biochem. Sci. 25, 147–150 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 61.

    Robert, X. & Gouet, P. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res. 42, 320–324 (2014).

    Article 
    CAS 

    Google Scholar 

  • 62.

    Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 63.

    Laemmli, U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685 (1970).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 64.

    Cornish-Bowden, A. Robust estimation in enzyme kinetics. In Kinetic Data Analysis: Design and Analysis of Enzyme and Pharmaco-Kinetic Experiments (ed. Endrenyi, L.) 105–119 (Plenum Press, 1981).

    Chapter 

    Google Scholar 

  • 65.

    Kabsch, W. et al. XDS. Acta Cryst. D 66, 125–132 (2010).

    CAS 
    Article 

    Google Scholar 

  • 66.

    Evans, P. Scaling and assessment of data quality. Acta Cryst. D 62, 72–82 (2006).

    Article 
    CAS 

    Google Scholar 

  • 67.

    Winn, M. D. et al. Overview of the CCP4 suite and current developments. Acta Cryst. D 67, 235–242 (2011).

    CAS 
    Article 

    Google Scholar 

  • 68.

    Waterhouse, A. et al. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res. 46, 296–303 (2018).

    Article 
    CAS 

    Google Scholar 

  • 69.

    Rivera-Colon, Y., Schutsky, E. K., Kita, A. Z. & Garman, S. C. The structure of human GALNS reveals the molecular basis for mucopolysaccharidosis IV A. J. Mol. Biol. 423, 736–751 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 70.

    Adams, P. D. et al. PHENIX: A comprehensive Python-based system for macromolecular structure solution. Acta Cryst. D 66, 213–221 (2010).

    CAS 
    Article 

    Google Scholar 

  • 71.

    Terwilliger, T. C., Adams, P. D., Afonine, P. V. & Sobolev, O. V. A fully automatic method yielding initial models from high-resolution cryo-electron microscopy maps. Nat. Methods 15, 905–908 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 72.

    Liebschner, D. et al. Macromolecular structure determination using X-rays, neutrons and electrons: Recent developments in Phenix. Acta Cryst. D 75, 861–877 (2019).

    CAS 
    Article 

    Google Scholar 

  • 73.

    Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Cryst. D 66, 486–501 (2010).

    CAS 
    Article 

    Google Scholar 

  • 74.

    Moriarty, N. W., Grosse-Kunstleve, R. W. & Adams, P. D. Electronic ligand builder and optimization workbench (eLBOW): A tool for ligand coordinate and restraint generation. Acta Cryst. D 65, 1074–1080 (2009).

    CAS 
    Article 

    Google Scholar 

  • 75.

    Oleg, T. & Arthur, O. J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31, 455–461 (2010).

    Google Scholar 

  • 76.

    Pettersen, E. F. et al. UCSF Chimera: A visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 77.

    Jurrus, E. et al. Improvements to the APBS biomolecular solvation software suite. Protein Sci. 27, 112–128 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Source link