Preloader

A novel temporary immersion bioreactor system for large scale multiplication of banana (Rasthali AAB—Silk)

  • 1.

    Stover, R. H. & Simmonds, N. W. Bananas (Longman Scientific & Technical, 1987).

    Google Scholar 

  • 2.

    Singh, H. P., Uma, S. & Sathiamoorthy, S. A Tentative Key for Identification and Classification of Indian Bananas (National Research Centre for banana (ICAR), 2001).

    Google Scholar 

  • 3.

    Ploetz, R. C., Kepler, A. K., Daniells, J. & Nelson, S. C. Banana and plantain: An overview with emphasis on Pacific island cultivars. Species Profiles Pac. Island Agrofor. 1, 21–32 (2007).

    Google Scholar 

  • 4.

    Pegg, K. G., Coates, L. M., O’Neill, W. T. & Turner, D. W. The epidemiology of fusarium wilt of banana. Front. Plant Sci. 10, 1–19 (2019).

    Article 

    Google Scholar 

  • 5.

    Dita, M., Barquero, M., Heck, D., Mizubuti, E. S. G. & Staver, C. P. Fusarium wilt of banana: Current knowledge on epidemiology and research needs toward sustainable disease management. Front. Plant Sci. 91, 1468 (2018).

    Article 

    Google Scholar 

  • 6.

    FAO. The Global Programme on Banana Fusarium Wilt Disease (Programme Summary) Protecting Banana Production from the Disease with Focus on Tropical Race 4 (TR4). 8 http://www.fao.org/fileadmin/templates/fcc/web_programmesummary_PRINT.pdf (2017).

  • 7.

    Anis, M. & Ahmad, N. Plant Tissue Culture: Propagation, Conservation and Crop Improvement (Springer, 2016).

    Book 

    Google Scholar 

  • 8.

    Rishbeth, J. Fusarium wilt of bananas in Jamaica: II. Some apsects of host-parasite relationships. Ann. Bot. 21, 215–245 (1957).

    Article 

    Google Scholar 

  • 9.

    Su, H. J., Hwang, S. C. & Ko, W. H. Fusarial wilt of cavendish Bananas in Taiwan. Plant Dis. 70, 814–818 (1986).

    Article 

    Google Scholar 

  • 10.

    Cardoso, J. C., Sheng Gerald, L. T. & Teixeira da Silva, J. A. Micropropagation in the twenty-first century. In Methods in Molecular Biology (Springer, 2018).

    Google Scholar 

  • 11.

    Sathiamoorthy, S., Uma, S., Selvarajan, R. & Shyam, B. Multiplication of Virus-Free Banana Plants Through Shoot Tip Culture. Technical Bulletin No.3 (National Research Centre for Banana (ICAR), 2001).

    Google Scholar 

  • 12.

    Muhammad, A., Hussain, I., Saqlan Naqvi, S. M. & Rashid, H. Banana plantlet production through tissue culture. Pak. J. Bot. 36, 617–620 (2004).

    Google Scholar 

  • 13.

    Kodym, A. & Zapata-Arias, F. J. Low-cost alternatives for the micropropagation of banana. Plant Cell Tissue Organ Cult. 66, 67–71 (2001).

    CAS 
    Article 

    Google Scholar 

  • 14.

    Nandwani, D., Zehr, U., Zehr, B. E. & Barwale, R. B. Mass propagation and ex vitro survival of banana cv. ‘Basrai’ through tissue culture. Gartenbauwissenschaft 65, 237–240 (2000).

    CAS 

    Google Scholar 

  • 15.

    Saraswathi, M. S. et al. Cost-effective tissue culture media for large-scale propagation of three commercial banana (Musa spp.) varieties. J. Hortic. Sci. Biotechnol. 91, 23–29 (2016).

    Article 

    Google Scholar 

  • 16.

    Jekayinoluwa, T. et al. Agromorphologic, genetic and methylation profiling of Dioscorea and Musa species multiplied under three micropropagation systems. PLoS ONE 14, 1–17 (2019).

    Article 
    CAS 

    Google Scholar 

  • 17.

    FAO and IAEA Proceedings of a technical meeting organized by the Joint FAO/IAEA division of nuclear techniques in food and agriculture and held in Vienna, 26–30 August 2002. In Low Cost Options for Tissue Culture Technology in Developing Countries 26–30 (International Atomic Energy Agency, 2004).

    Google Scholar 

  • 18.

    Bello-Bello, J. J., Cruz-Cruz, C. A. & Pérez-Guerra, J. C. A new temporary immersion system for commercial micropropagation of banana (Musa AAA cv. Grand Naine). In vitro Cell. Dev. Biol. 55, 313–320 (2019).

    Article 

    Google Scholar 

  • 19.

    Alvard, D., Cote, F. & Teisson, C. Comparison of methods of liquid medium culture for banana micropropagation: Effects of temporary immersion of explants. Plant Cell Tissue Organ Cult. 32, 55–60 (1993).

    Article 

    Google Scholar 

  • 20.

    Teisson, C. & Alvard, D. A new concept of plant. In In vitro Cultivation Liquid Medium: Temporary Immersion 105–110 (Springer, 1995).

    Google Scholar 

  • 21.

    Roels, S. et al. Optimization of plantain (Musa AAB ) micropropagation by temporary immersion system. Plant Cell Tissue Organ Cult. 82, 57–66 (2005).

    CAS 
    Article 

    Google Scholar 

  • 22.

    Roels, S. et al. The effect of headspace renewal in a Temporary Immersion Bioreactor on plantain (Musa AAB) shoot proliferation and quality. Plant Cell Tissue Organ Cult. 84, 155–163 (2006).

    Article 

    Google Scholar 

  • 23.

    Aragón, C. E. et al. Photosynthesis and carbon metabolism in plantain (Musa AAB) plantlets growing in temporary immersion bioreactors and during ex vitro acclimatization. In Vitro Cell. Dev. Biol. 41, 550–554 (2005).

    Article 
    CAS 

    Google Scholar 

  • 24.

    Aragón, C. E. et al. Comparison of plantain plantlets propagated in temporary immersion bioreactors and gelled medium during in vitro growth and acclimatization. Biol. Plant. 58, 29–38 (2014).

    Article 
    CAS 

    Google Scholar 

  • 25.

    Wilken, D. et al. Effect of immersion systems, lighting, and TIS designs on biomass increase in micropropagating banana (Musa spp. cv ‘Grande naine’ AAA). In Vitro Cell. Dev. Biol. 50, 582–589 (2014).

    CAS 
    Article 

    Google Scholar 

  • 26.

    Mordocco, A. M., Brumbley, J. A. & Prakash, L. Development of a temporary immersion system (RITA®) for mass production of sugarcane (Saccharum spp. interspecific hybrids). In Vitro Cell. Dev. Biol. 45, 450–457 (2009).

    CAS 
    Article 

    Google Scholar 

  • 27.

    Escalona, M. et al. Pineapple (Ananas comosus L. Merr) micropropagation in temporary immersion systems. Plant Cell Rep. 18, 743–748 (1999).

    CAS 
    Article 

    Google Scholar 

  • 28.

    Othmani, A., Bayoudh, C., Drira, N. & Trifi, M. In vitro cloning of date palm phoenix dactylifera l., cv. Deglet bey by using embryogenic suspension and temporary immersion bioreactor (tib). Biotechnol. Biotechnol. Equip. 23, 1181–1188 (2009).

    CAS 
    Article 

    Google Scholar 

  • 29.

    Georgiev, V., Schumann, A., Pavlov, A. & Bley, T. Temporary immersion systems in plant biotechnology. Eng. Life Sci. 14, 607–621 (2014).

    CAS 
    Article 

    Google Scholar 

  • 30.

    Martínez-Estrada, E., Islas-Luna, B., Pérez-Sato, J. A. & Bello-Bello, J. J. Temporary immersion improves in vitro multiplication and acclimatization of Anthurium andreanum Lind. Sci. Hortic. 249, 185–191 (2019).

    Article 

    Google Scholar 

  • 31.

    Etienne, H. & Berthouly, M. Temporary immersion systems in plant micropropagation. Plant Cell Tissue Organ Cult. 69, 215–231 (2002).

    Article 

    Google Scholar 

  • 32.

    Ayub, R. A. et al. Sucrose concentration and volume of liquid medium on the in vitro growth and development of blackberry cv. Tupy in temporary immersion systems. Cienc. Agrotecnol. https://doi.org/10.1590/1413-7054201943007219 (2019).

    Article 

    Google Scholar 

  • 33.

    Ramos-Castellá, A., Iglesias-Andreu, L. G., Bello-Bello, J. & Lee-Espinosa, H. Improved propagation of vanilla (Vanilla planifolia Jacks. ex Andrews) using a temporary immersion system. In Vitro Cell. Dev. Biol. 50, 576–581 (2014).

    Article 
    CAS 

    Google Scholar 

  • 34.

    Zhang, B. et al. Optimizing factors affecting development and propagation of Bletilla striata in a temporary immersion bioreactor system. Sci. Hortic. 232, 121–126 (2018).

    CAS 
    Article 

    Google Scholar 

  • 35.

    Mendes, B. M. J., Filippi, S. B., Demétrio, C. G. B. & Rodriguez, A. P. M. A statistical approach to study the dynamics of micropropagation rates, using banana (Musa spp.) as an example. Plant Cell Rep. 18, 967–971 (1999).

    CAS 
    Article 

    Google Scholar 

  • 36.

    Banthorpe, D. V. & Brown, G. D. Growth and secondary metabolism in cell cultures of Tanacetum, Mentha and Anethum species in buffered media. Plant Sci. 67, 107–113 (1990).

    CAS 
    Article 

    Google Scholar 

  • 37.

    Sekeli, R., Abdullah, J. O., Namasivayam, P., Muda, P. & Bakar, U. K. A. Better rooting procedure to enhance survival rate of field grown malaysian eksotika papaya transformed with 1-aminocyclopropane-1-carboxylic acid oxidase gene. ISRN Biotechnol. 2013, 1–13 (2013).

    Article 
    CAS 

    Google Scholar 

  • 38.

    Arab, M. M. et al. Modeling and optimizing a new culture medium for in vitro rooting of G×N15 prunus rootstock using artificial neural network-genetic algorithm. Sci. Rep. 8, 1–18 (2018).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 39.

    Nicholson, J., Shukla, M. R. & Saxena, P. K. In vitro rooting of hybrid hazelnuts (Corylus avellana × corylus americana) in a temporary immersion system. Botany 98, 343–352 (2020).

    CAS 
    Article 

    Google Scholar 

  • 40.

    Simonton, W., Robacker, C. & Krueger, S. A programmable micropropagation apparatus using cycled liquid medium. Plant Cell. Tissue Organ Cult. 27, 211–218 (1991).

    Article 

    Google Scholar 

  • 41.

    Niemenak, N., Noah, A. M. & Omokolo, D. N. Micropropagation of cocoyam (Xanthosoma sagittifolium L. Schott) in temporary immersion bioreactor. Plant Biotechnol. Rep. 7, 383–390 (2013).

    Article 

    Google Scholar 

  • 42.

    McAlister, B., Finnie, J., Watt, M. P. & Blakeway, F. Use of the temporary immersion bioreactor system (RITA®) for production of commercial Eucalyptus clones in Mondi Forests (SA). Plant Cell. Tissue Organ Cult. 81, 347–358 (2005).

    Article 

    Google Scholar 

  • 43.

    Ramírez-Mosqueda, M. A., Iglesias-Andreu, L. G., Ramírez-Madero, G. & Hernández-Rincón, E. U. Micropropagation of Stevia rebaudiana Bert. in temporary immersion systems and evaluation of genetic fidelity. S. Afr. J. Bot. 106, 238–243 (2016).

    Article 
    CAS 

    Google Scholar 

  • 44.

    Martre, P., Lacan, D., Just, D. & Teisson, C. Physiological effects of temporary immersion on Hevea brasiliensis callus. Plant Cell Tissue Organ Cult. 67, 25–35 (2001).

    CAS 
    Article 

    Google Scholar 

  • 45.

    Zhao, Y., Sun, W., Wang, Y., Saxena, P. K. & Liu, C. Z. Improved mass multiplication of Rhodiola crenulata shoots using temporary immersion bioreactor with forced ventilation. Appl. Biochem. Biotechnol. 166, 1480–1490 (2012).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 46.

    Tomlinson, P. B. Development of the stomatal complex as a taxonomic character in the monocotyledons. Taxon 23, 109–128 (1974).

    Article 

    Google Scholar 

  • 47.

    Batista, D. S. et al. Light quality in plant tissue culture: Does it matter?. In Vitro Cell. Dev. Biol. 54, 195–215 (2018).

    CAS 
    Article 

    Google Scholar 

  • 48.

    Kaur, N. et al. Regulation of banana phytoene synthase (MaPSY) expression, characterization and their modulation under various abiotic stress conditions. Front. Plant Sci. 8, 462 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 49.

    Nisar, N., Li, L., Lu, S., Khin, N. C. & Pogson, B. J. Carotenoid metabolism in plants. Mol. Plant 8, 68–82 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 50.

    Harvey, B. M. R., Selby, C. & Bowden, G. Stimulation of rooting in vitro: Effects of inhibitors of abscisic acid synthesis. In Physiology, Growth and Development of Plants in Culture (eds Lumsden, P. J. et al.) (Springer, 1994).

    Google Scholar 

  • 51.

    Hazarika, B. N. Morpho-physiological disorders in in vitro culture of plants. Sci. Hortic. 108, 105–120 (2006).

    CAS 
    Article 

    Google Scholar 

  • 52.

    Murashige, T. & Skoog, F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 15, 473–497 (1962).

    CAS 
    Article 

    Google Scholar 

  • 53.

    Ramírez-Mosqueda, M. A., Cruz-Cruz, C. A., Cano-Ricárdez, A. & Bello-Bello, J. J. Assessment of different temporary immersion systems in the micropropagation of anthurium (Anthurium andreanum). Biotech 9, 3–9 (2019).

    Google Scholar 

  • 54.

    Aliniaeifard, S. & Van Meeteren, U. Stomatal characteristics and desiccation response of leaves of cut chrysanthemum (Chrysanthemum morifolium) flowers grown at high air humidity. Sci. Hortic. 205, 84–89 (2016).

    Article 

    Google Scholar 

  • 55.

    Monja-Mio, K. M., Pool, F. B., Herrera, G. H., EsquedaValle, M. & Robert, M. L. Development of the stomatal complex and leaf surface of Agave angustifolia Haw. ‘Bacanora’ plantlets during the in vitro to ex vitro transition process. Sci. Hortic. 189, 32–40 (2015).

    CAS 
    Article 

    Google Scholar 

  • 56.

    Maleki Asayesh, Z., Vahdati, K., Aliniaeifard, S. & Askari, N. Enhancement of ex vitro acclimation of walnut plantlets through modification of stomatal characteristics in vitro. Sci. Hortic. 220, 114–121 (2017).

    Article 

    Google Scholar 

  • 57.

    Thomas, B. F. & ElSohly, M. A. The botany of Cannabis sativa L. In The Analytical Chemistry of Cannabis 1–26 (Elsevier, 2016).

    Google Scholar 

  • 58.

    Bhatia, S. & Sharma, K. Technical glitches in micropropagation. In Modern Applications of Plant Biotechnology in Pharmaceutical Sciences (Elsevier, 2015).

    Google Scholar 

  • 59.

    Rout, G. R., Senapati, S. K., Aparajita, S. & Palai, S. K. Studies on genetic identification and genetic fidelity of cultivated banana using ISSR markers. Plant Omics J. Southern Cross J. 2, 250–285 (2009).

    CAS 

    Google Scholar 

  • 60.

    Venkatachalam, L., Sreedhar, R. V. & Bhagyalakshmi, N. Genetic analyses of micropropagated and regenerated plantlets of banana as assessed by RAPD and ISSR markers. In Vitro Cell. Dev. Biol. 43, 267–274 (2007).

    CAS 
    Article 

    Google Scholar 

  • 61.

    Saraswathi, M. S. et al. Assessing the robustness of IRAP and RAPD marker systems to study intra-group diversity among cavendish (AAA) clones of banana. J. Hortic. Sci. Biotechnol. 86, 7–12 (2011).

    Article 

    Google Scholar 

  • 62.

    Burnison, B. K. Modified dimethyl sulfoxide (DMSO) extraction for chlorophyll analysis of phytoplankton. Can. J. Fish. Aquat. Sci. 37, 729–733 (1980).

    CAS 
    Article 

    Google Scholar 

  • 63.

    Xu, Z. & Zhou, G. Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grass. J. Exp. Bot. 59, 3317–3325 (2008).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 64.

    Zakaria, W. & Razak, A. R. SEM study of the morphology of leaves of four dessert banana cultivars (Musa spp. Cv. ‘Intan’, ‘Jari Buaya’, ‘Novaria’ and ‘Raja Udang Merah’) in Malaysia. J. Trop. Agric. Food Sci. 27, 151–158 (1999).

    Google Scholar 

  • 65.

    Zakaria, W. & Razak, A. R. The SEM of the surface features of dessert banana peel (Musa spp., AA and AAA groups). In Proc. First Asean Microscopy Confence November 27–30, 1997, Senai, Johor, Malaysia (eds Razak, A. R. et al.) 120–123. (Electron Microscopy Society Malaysia, 1997).

  • 66.

    Gawel, N. J. & Jarret, R. L. A modified CTAB DNA extraction procedure for Musa and Ipomoea. Plant Mol. Biol. Rep. 9, 262 (1991).

    CAS 
    Article 

    Google Scholar 

  • Source link