Preloader

A novel polypeptide-modified fluorescent gold nanoclusters for copper ion detection

  • Wen, Q., Gu, Y., Tang, L. J., Yu, R. Q. & Jiang, J. H. Peptide-templated gold nanocluster beacon as a sensitive, label-free sensor for protein post-translational modification enzymes. Anal. Chem. 85, 11681–11685. https://doi.org/10.1021/ac403308b (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Bhatt, K. D. et al. Turn-on fluorescence probe for selective detection of Hg(II) by calixpyrrole hydrazide reduced silver nanoparticle: Application to real water sample. Chin. Chem. Lett. 27, 731–737. https://doi.org/10.1016/j.cclet.2016.01.012 (2016).

    CAS 
    Article 

    Google Scholar 

  • Zhang, Y. et al. Turn-on fluorescent InP nanoprobe for detection of cadmium ions with high selectivity and sensitivity. ACS Appl. Mater. Interfaces. 5, 9709–9713. https://doi.org/10.1021/am402768w (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Xiaofei, W. et al. Synthesis of double gold nanoclusters/graphene oxide and its application as a new fluorescence probe for Hg2+ detection with greatly enhanced sensitivity and rapidity. RSC Adv. 4, 24978–24985. https://doi.org/10.1039/c4ra03217a (2014).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Wang, S., Wang, X., Zhang, Z. & Chen, L. Highly sensitive fluorescence detection of copper ion based on its catalytic oxidation to cysteine indicated by fluorescein isothiocyanate functionalized gold nanoparticles. Colloids Surf., A 468, 333–338. https://doi.org/10.1016/j.colsurfa.2014.12.050 (2015).

    CAS 
    Article 

    Google Scholar 

  • Volland, S. et al. Rescue of heavy metal effects on cell physiology of the algal model system Micrasterias by divalent ions. J. Plant Physiol. 171, 154–163. https://doi.org/10.1016/j.jplph.2013.10.002 (2014).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhao, Z., Chen, H., Zhang, H., Ma, L. & Wang, Z. Polyacrylamide-phytic acid-polydopamine conducting porous hydrogel for rapid detection and removal of copper (II) ions. Biosens Bioelectr. 91, 306–312. https://doi.org/10.1016/j.bios.2016.12.047 (2017).

    CAS 
    Article 

    Google Scholar 

  • Wang, P. et al. Sestrin2 overexpression attenuates focal cerebral ischemic injury in rat by increasing Nrf2/HO-1 pathway-mediated angiogenesis. Neuroscience 410, 140–149. https://doi.org/10.1016/j.neuroscience.2019.05.005 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Su, Y. et al. Bonded-luminescent foam based on europium complexes as a reversible copper (II) ions sensor in pure water. Eur. Polymer J. 112, 461–465. https://doi.org/10.1016/j.eurpolymj.2019.01.034 (2019).

    CAS 
    Article 

    Google Scholar 

  • Yuan, Z., Cai, N., Du, Y., He, Y. & Yeung, E. S. Sensitive and selective detection of copper ions with highly stable polyethyleneimine-protected silver nanoclusters. Anal. Chem. 86, 419–426. https://doi.org/10.1021/ac402158j (2014).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Ren, D. et al. Spirohydrazine rhodamine as a fluorescent chemodosimeter for the selective detection of Cu(II) ions and its application in live cell imaging. Sens. Actuators, B Chem. 255, 2321–2328. https://doi.org/10.1016/j.snb.2017.09.048 (2018).

    CAS 
    Article 

    Google Scholar 

  • Ranee, S. J., Sivaraman, G., Pushpalatha, A. M. & Muthusubramanian, S. Quinoline based sensors for bivalent copper ions in living cells. Sens. Actuators, B Chem. 255, 630–637. https://doi.org/10.1016/j.snb.2017.08.111 (2018).

    CAS 
    Article 

    Google Scholar 

  • Shi, Y. et al. Dye-assembled upconversion nanocomposite for luminescence ratiometric in vivo bioimaging of copper ions. ACS Appl. Mater. Interfaces. 11, 430–436. https://doi.org/10.1021/acsami.8b19961 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Chen, H., Teng, Y., Lu, S., Wang, Y. & Wang, J. Contamination features and health risk of soil heavy metals in China. Sci. Total Environ. 512–513, 143–153. https://doi.org/10.1016/j.scitotenv.2015.01.025 (2015).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Shahid, M. et al. Foliar heavy metal uptake, toxicity and detoxification in plants: A comparison of foliar and root metal uptake. J. Hazard. Mater. 325, 36–58. https://doi.org/10.1016/j.jhazmat.2016.11.063 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Royzen, M., Dai, Z. H. & Canary, J. W. Ratiometric displacement approach to Cu(II) sensing by fluorescence. J. Am. Chem. Soc. 127, 1612–1613. https://doi.org/10.1021/ja0431051 (2005).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Xu, W., Zhu, L., Shao, X., Huang, K. & Luo, Y. An electrochemical biosensor based on nucleic acids enzyme and nanochannels for detecting copper (II) ion. Biosens Bioelectr. 120, 168–174. https://doi.org/10.1016/j.bios.2018.08.033 (2018).

    CAS 
    Article 

    Google Scholar 

  • Wang, H. et al. A facile fluorescent probe with a large Stokes shift for sequentially detecting copper and sulfide in 100% aqueous solution and imaging them in living cells. Sens. Actuators, B Chem. 256, 600–608. https://doi.org/10.1016/j.snb.2017.10.124 (2018).

    CAS 
    Article 

    Google Scholar 

  • Tang, X. et al. A dual site controlled probe for fluorescent monitoring of intracellular pH and colorimetric monitoring of Cu2+. Sens. Actuators, B Chem. 270, 35–44. https://doi.org/10.1016/j.snb.2018.04.173 (2018).

    CAS 
    Article 

    Google Scholar 

  • Pang, X. et al. Multifunctional peptide-based fluorescent chemosensor for detection of Hg2+, Cu2+ and S2- ions. Luminescence 34, 585–594. https://doi.org/10.1002/bio.3641 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Huang, Y.-Q. et al. Streptavidin and gold nanoparticles-based dual signal amplification for sensitive magnetoelastic sensing of mercury using a specific aptamer probe. Sens. Actuators, B Chem. 235, 507–514. https://doi.org/10.1016/j.snb.2016.05.111 (2016).

    CAS 
    Article 

    Google Scholar 

  • Memon, A. G. et al. Utilization of unmodified gold nanoparticles for label-free detection of mercury (II): Insight into rational design of mercury-specific oligonucleotides. J. Hazard. Mater. 321, 417–423. https://doi.org/10.1016/j.jhazmat.2016.09.025 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Yahia-Ammar, A., Sierra, D., Merola, F., Hildebrandt, N. & Le Guevel, X. Self-assembled gold nanoclusters for bright fluorescence imaging and enhanced drug delivery. ACS Nano 10, 2591–2599. https://doi.org/10.1021/acsnano.5b07596 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Jin, R. Atomically precise gold nanoclusters as new model catalysts. Abstr. Papers Am. Chem. Soc. 245, 1749–1758 (2013).

    Google Scholar 

  • Lin, S.-Y. et al. The protease-mediated nucleus shuttles of subnanometer gold quantum dots for real-time monitoring of apoptotic cell death. J. Am. Chem. Soc. 132, 8309–8315. https://doi.org/10.1021/ja100561k (2010).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Shi, H., Ou, M. Y., Cao, J. P. & Chen, G. F. Synthesis of ovalbumin-stabilized highly fluorescent gold nanoclusters and their application as an Hg2+ sensor. RSC Adv. 5, 86740–86745. https://doi.org/10.1039/c5ra15559b (2015).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Yuan, X., Luo, Z., Yu, Y., Yao, Q. & Xie, J. Luminescent noble metal nanoclusters as an emerging optical probe for sensor development. Chem.-An Asian J. 8, 858–871. https://doi.org/10.1002/asia.201201236 (2013).

    CAS 
    Article 

    Google Scholar 

  • Xu, S. et al. Dual ligand co-functionalized fluorescent gold nanoclusters for the “turn on” sensing of glutathione in tumor cells. J. Mater. Chem. B 4, 1270–1275. https://doi.org/10.1039/c5tb02195b (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Niu, Y. et al. Fluorescence switch of gold nanoclusters stabilized with bovine serum albumin for efficient and sensitive detection of cysteine and copper ion in mice with Alzheimer’s disease. Talanta 223, 121745. https://doi.org/10.1016/j.talanta.2020.121745 (2021).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Zhao, S. et al. BSA-AuNCs based enhanced photoelectrochemical biosensors and its potential use in multichannel detections. J. Photochem. Photobiol., A 342, 15–24. https://doi.org/10.1016/j.jphotochem.2017.03.034 (2017).

    CAS 
    Article 

    Google Scholar 

  • Hu, X. L., Wu, X. M., Fang, X., Li, Z. J. & Wang, G. L. Switchable fluorescence of gold nanoclusters for probing the activity of alkaline phosphatase and its application in immunoassay. Biosens Bioelectr. 77, 666–672. https://doi.org/10.1016/j.bios.2015.10.046 (2016).

    CAS 
    Article 

    Google Scholar 

  • Zhang, H. et al. Gold nanoclusters as a near-infrared fluorometric nanothermometer for living cells. Mikrochim Acta 186, 353. https://doi.org/10.1007/s00604-019-3460-3 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Shang, L. & Nienhaus, G. U. Gold nanoclusters as novel optical probes for in vitro and in vivo fluorescence imaging. Biophys. Rev. 4, 313–322. https://doi.org/10.1007/s12551-012-0076-9 (2012).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ge, J., Qi, Z. & Zhang, L. A simple and sensitive fluorescence assay for biothiol and acetylcholinesterase activity detection based on a HSA–AuNCs@Cu2+ complex. Anal. Methods 11, 5031–5037. https://doi.org/10.1039/c9ay01815h (2019).

    CAS 
    Article 

    Google Scholar 

  • Qian, S. et al. Engineering luminescent metal nanoclusters for sensing applications. Coord. Chem. Rev. https://doi.org/10.1016/j.ccr.2021.214268 (2022).

    Article 

    Google Scholar 

  • Luo, Z., Zheng, K. & Xie, J. Engineering ultrasmall water-soluble gold and silver nanoclusters for biomedical applications. Chem. Commun. (Camb) 50, 5143–5155. https://doi.org/10.1039/c3cc47512c (2014).

    CAS 
    Article 

    Google Scholar 

  • Xie, J., Lee, J. Y., Wang, D. I. C. & Ting, Y. P. Silver nanoplates: From biological to biomimetic synthesis. ACS Nano 1, 429–439. https://doi.org/10.1021/nn7000883 (2007).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Li, Y., Yuan, M., Khan, A. J., Wang, L. & Zhang, F. Peptide-gold nanocluster synthesis and intracellular Hg2+ sensing. Colloids Surf. A: Physicochem. Eng. Aspects. https://doi.org/10.1016/j.colsurfa.2019.123666 (2019).

    Article 

    Google Scholar 

  • Yu, Z. et al. Primary and secondary structure of novel ACE-inhibitory peptides from egg white protein. Food Chem. 133, 315–322. https://doi.org/10.1016/j.foodchem.2012.01.032 (2012).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Tang, Y. et al. Peptide modified gold nanoclusters as a novel fluorescence detector based on quenching system of detecting Allura red. Anal. Methods 10, 5672–5678. https://doi.org/10.1039/c8ay01494a (2018).

    CAS 
    Article 

    Google Scholar 

  • Song, W., Wang, Y., Liang, R. P., Zhang, L. & Qiu, J. D. Label-free fluorescence assay for protein kinase based on peptide biomineralized gold nanoclusters as signal sensing probe. Biosens Bioelectr. 64, 234–240. https://doi.org/10.1016/j.bios.2014.08.082 (2015).

    CAS 
    Article 

    Google Scholar 

  • Song, W., Liang, R.-P., Wang, Y., Zhang, L. & Qiu, J.-D. Gold nanoclusters-based dual-emission ratiometric fluorescence probe for monitoring protein kinase. Sens. Actuators, B Chem. 226, 144–150. https://doi.org/10.1016/j.snb.2015.11.134 (2016).

    CAS 
    Article 

    Google Scholar 

  • Qian, D., Wang, Z., Xiao, Z. & Fang, C.-J. A fluorescent probe for the detection of Cu(II) in water and tumor cells. Inorg. Chem. Commun. https://doi.org/10.1016/j.inoche.2021.108471 (2021).

    Article 

    Google Scholar 

  • Zhang, M. et al. A ratiometric fluorescent probe for sensitive, selective and reversible detection of copper (II) based on riboflavin-stabilized gold nanoclusters. Talanta 117, 399–404. https://doi.org/10.1016/j.talanta.2013.09.034 (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Zheng, J. et al. A highly sensitive and selective fluorescent Cu2+ sensor synthesized with silica nanoparticles. Nanotechnology 21, 045501. https://doi.org/10.1088/0957-4484/21/4/045501 (2010).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Liao, B. et al. A facile one-step synthesis of fluorescent silicon quantum dots and their application for detecting Cu2+. RSC Adv. 6, 14465–14467. https://doi.org/10.1039/c5ra25563e (2016).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Source link