Wen, Q., Gu, Y., Tang, L. J., Yu, R. Q. & Jiang, J. H. Peptide-templated gold nanocluster beacon as a sensitive, label-free sensor for protein post-translational modification enzymes. Anal. Chem. 85, 11681–11685. https://doi.org/10.1021/ac403308b (2013).
Google Scholar
Bhatt, K. D. et al. Turn-on fluorescence probe for selective detection of Hg(II) by calixpyrrole hydrazide reduced silver nanoparticle: Application to real water sample. Chin. Chem. Lett. 27, 731–737. https://doi.org/10.1016/j.cclet.2016.01.012 (2016).
Google Scholar
Zhang, Y. et al. Turn-on fluorescent InP nanoprobe for detection of cadmium ions with high selectivity and sensitivity. ACS Appl. Mater. Interfaces. 5, 9709–9713. https://doi.org/10.1021/am402768w (2013).
Google Scholar
Xiaofei, W. et al. Synthesis of double gold nanoclusters/graphene oxide and its application as a new fluorescence probe for Hg2+ detection with greatly enhanced sensitivity and rapidity. RSC Adv. 4, 24978–24985. https://doi.org/10.1039/c4ra03217a (2014).
Google Scholar
Wang, S., Wang, X., Zhang, Z. & Chen, L. Highly sensitive fluorescence detection of copper ion based on its catalytic oxidation to cysteine indicated by fluorescein isothiocyanate functionalized gold nanoparticles. Colloids Surf., A 468, 333–338. https://doi.org/10.1016/j.colsurfa.2014.12.050 (2015).
Google Scholar
Volland, S. et al. Rescue of heavy metal effects on cell physiology of the algal model system Micrasterias by divalent ions. J. Plant Physiol. 171, 154–163. https://doi.org/10.1016/j.jplph.2013.10.002 (2014).
Google Scholar
Zhao, Z., Chen, H., Zhang, H., Ma, L. & Wang, Z. Polyacrylamide-phytic acid-polydopamine conducting porous hydrogel for rapid detection and removal of copper (II) ions. Biosens Bioelectr. 91, 306–312. https://doi.org/10.1016/j.bios.2016.12.047 (2017).
Google Scholar
Wang, P. et al. Sestrin2 overexpression attenuates focal cerebral ischemic injury in rat by increasing Nrf2/HO-1 pathway-mediated angiogenesis. Neuroscience 410, 140–149. https://doi.org/10.1016/j.neuroscience.2019.05.005 (2019).
Google Scholar
Su, Y. et al. Bonded-luminescent foam based on europium complexes as a reversible copper (II) ions sensor in pure water. Eur. Polymer J. 112, 461–465. https://doi.org/10.1016/j.eurpolymj.2019.01.034 (2019).
Google Scholar
Yuan, Z., Cai, N., Du, Y., He, Y. & Yeung, E. S. Sensitive and selective detection of copper ions with highly stable polyethyleneimine-protected silver nanoclusters. Anal. Chem. 86, 419–426. https://doi.org/10.1021/ac402158j (2014).
Google Scholar
Ren, D. et al. Spirohydrazine rhodamine as a fluorescent chemodosimeter for the selective detection of Cu(II) ions and its application in live cell imaging. Sens. Actuators, B Chem. 255, 2321–2328. https://doi.org/10.1016/j.snb.2017.09.048 (2018).
Google Scholar
Ranee, S. J., Sivaraman, G., Pushpalatha, A. M. & Muthusubramanian, S. Quinoline based sensors for bivalent copper ions in living cells. Sens. Actuators, B Chem. 255, 630–637. https://doi.org/10.1016/j.snb.2017.08.111 (2018).
Google Scholar
Shi, Y. et al. Dye-assembled upconversion nanocomposite for luminescence ratiometric in vivo bioimaging of copper ions. ACS Appl. Mater. Interfaces. 11, 430–436. https://doi.org/10.1021/acsami.8b19961 (2019).
Google Scholar
Chen, H., Teng, Y., Lu, S., Wang, Y. & Wang, J. Contamination features and health risk of soil heavy metals in China. Sci. Total Environ. 512–513, 143–153. https://doi.org/10.1016/j.scitotenv.2015.01.025 (2015).
Google Scholar
Shahid, M. et al. Foliar heavy metal uptake, toxicity and detoxification in plants: A comparison of foliar and root metal uptake. J. Hazard. Mater. 325, 36–58. https://doi.org/10.1016/j.jhazmat.2016.11.063 (2017).
Google Scholar
Royzen, M., Dai, Z. H. & Canary, J. W. Ratiometric displacement approach to Cu(II) sensing by fluorescence. J. Am. Chem. Soc. 127, 1612–1613. https://doi.org/10.1021/ja0431051 (2005).
Google Scholar
Xu, W., Zhu, L., Shao, X., Huang, K. & Luo, Y. An electrochemical biosensor based on nucleic acids enzyme and nanochannels for detecting copper (II) ion. Biosens Bioelectr. 120, 168–174. https://doi.org/10.1016/j.bios.2018.08.033 (2018).
Google Scholar
Wang, H. et al. A facile fluorescent probe with a large Stokes shift for sequentially detecting copper and sulfide in 100% aqueous solution and imaging them in living cells. Sens. Actuators, B Chem. 256, 600–608. https://doi.org/10.1016/j.snb.2017.10.124 (2018).
Google Scholar
Tang, X. et al. A dual site controlled probe for fluorescent monitoring of intracellular pH and colorimetric monitoring of Cu2+. Sens. Actuators, B Chem. 270, 35–44. https://doi.org/10.1016/j.snb.2018.04.173 (2018).
Google Scholar
Pang, X. et al. Multifunctional peptide-based fluorescent chemosensor for detection of Hg2+, Cu2+ and S2- ions. Luminescence 34, 585–594. https://doi.org/10.1002/bio.3641 (2019).
Google Scholar
Huang, Y.-Q. et al. Streptavidin and gold nanoparticles-based dual signal amplification for sensitive magnetoelastic sensing of mercury using a specific aptamer probe. Sens. Actuators, B Chem. 235, 507–514. https://doi.org/10.1016/j.snb.2016.05.111 (2016).
Google Scholar
Memon, A. G. et al. Utilization of unmodified gold nanoparticles for label-free detection of mercury (II): Insight into rational design of mercury-specific oligonucleotides. J. Hazard. Mater. 321, 417–423. https://doi.org/10.1016/j.jhazmat.2016.09.025 (2017).
Google Scholar
Yahia-Ammar, A., Sierra, D., Merola, F., Hildebrandt, N. & Le Guevel, X. Self-assembled gold nanoclusters for bright fluorescence imaging and enhanced drug delivery. ACS Nano 10, 2591–2599. https://doi.org/10.1021/acsnano.5b07596 (2016).
Google Scholar
Jin, R. Atomically precise gold nanoclusters as new model catalysts. Abstr. Papers Am. Chem. Soc. 245, 1749–1758 (2013).
Lin, S.-Y. et al. The protease-mediated nucleus shuttles of subnanometer gold quantum dots for real-time monitoring of apoptotic cell death. J. Am. Chem. Soc. 132, 8309–8315. https://doi.org/10.1021/ja100561k (2010).
Google Scholar
Shi, H., Ou, M. Y., Cao, J. P. & Chen, G. F. Synthesis of ovalbumin-stabilized highly fluorescent gold nanoclusters and their application as an Hg2+ sensor. RSC Adv. 5, 86740–86745. https://doi.org/10.1039/c5ra15559b (2015).
Google Scholar
Yuan, X., Luo, Z., Yu, Y., Yao, Q. & Xie, J. Luminescent noble metal nanoclusters as an emerging optical probe for sensor development. Chem.-An Asian J. 8, 858–871. https://doi.org/10.1002/asia.201201236 (2013).
Google Scholar
Xu, S. et al. Dual ligand co-functionalized fluorescent gold nanoclusters for the “turn on” sensing of glutathione in tumor cells. J. Mater. Chem. B 4, 1270–1275. https://doi.org/10.1039/c5tb02195b (2016).
Google Scholar
Niu, Y. et al. Fluorescence switch of gold nanoclusters stabilized with bovine serum albumin for efficient and sensitive detection of cysteine and copper ion in mice with Alzheimer’s disease. Talanta 223, 121745. https://doi.org/10.1016/j.talanta.2020.121745 (2021).
Google Scholar
Zhao, S. et al. BSA-AuNCs based enhanced photoelectrochemical biosensors and its potential use in multichannel detections. J. Photochem. Photobiol., A 342, 15–24. https://doi.org/10.1016/j.jphotochem.2017.03.034 (2017).
Google Scholar
Hu, X. L., Wu, X. M., Fang, X., Li, Z. J. & Wang, G. L. Switchable fluorescence of gold nanoclusters for probing the activity of alkaline phosphatase and its application in immunoassay. Biosens Bioelectr. 77, 666–672. https://doi.org/10.1016/j.bios.2015.10.046 (2016).
Google Scholar
Zhang, H. et al. Gold nanoclusters as a near-infrared fluorometric nanothermometer for living cells. Mikrochim Acta 186, 353. https://doi.org/10.1007/s00604-019-3460-3 (2019).
Google Scholar
Shang, L. & Nienhaus, G. U. Gold nanoclusters as novel optical probes for in vitro and in vivo fluorescence imaging. Biophys. Rev. 4, 313–322. https://doi.org/10.1007/s12551-012-0076-9 (2012).
Google Scholar
Ge, J., Qi, Z. & Zhang, L. A simple and sensitive fluorescence assay for biothiol and acetylcholinesterase activity detection based on a HSA–AuNCs@Cu2+ complex. Anal. Methods 11, 5031–5037. https://doi.org/10.1039/c9ay01815h (2019).
Google Scholar
Qian, S. et al. Engineering luminescent metal nanoclusters for sensing applications. Coord. Chem. Rev. https://doi.org/10.1016/j.ccr.2021.214268 (2022).
Google Scholar
Luo, Z., Zheng, K. & Xie, J. Engineering ultrasmall water-soluble gold and silver nanoclusters for biomedical applications. Chem. Commun. (Camb) 50, 5143–5155. https://doi.org/10.1039/c3cc47512c (2014).
Google Scholar
Xie, J., Lee, J. Y., Wang, D. I. C. & Ting, Y. P. Silver nanoplates: From biological to biomimetic synthesis. ACS Nano 1, 429–439. https://doi.org/10.1021/nn7000883 (2007).
Google Scholar
Li, Y., Yuan, M., Khan, A. J., Wang, L. & Zhang, F. Peptide-gold nanocluster synthesis and intracellular Hg2+ sensing. Colloids Surf. A: Physicochem. Eng. Aspects. https://doi.org/10.1016/j.colsurfa.2019.123666 (2019).
Google Scholar
Yu, Z. et al. Primary and secondary structure of novel ACE-inhibitory peptides from egg white protein. Food Chem. 133, 315–322. https://doi.org/10.1016/j.foodchem.2012.01.032 (2012).
Google Scholar
Tang, Y. et al. Peptide modified gold nanoclusters as a novel fluorescence detector based on quenching system of detecting Allura red. Anal. Methods 10, 5672–5678. https://doi.org/10.1039/c8ay01494a (2018).
Google Scholar
Song, W., Wang, Y., Liang, R. P., Zhang, L. & Qiu, J. D. Label-free fluorescence assay for protein kinase based on peptide biomineralized gold nanoclusters as signal sensing probe. Biosens Bioelectr. 64, 234–240. https://doi.org/10.1016/j.bios.2014.08.082 (2015).
Google Scholar
Song, W., Liang, R.-P., Wang, Y., Zhang, L. & Qiu, J.-D. Gold nanoclusters-based dual-emission ratiometric fluorescence probe for monitoring protein kinase. Sens. Actuators, B Chem. 226, 144–150. https://doi.org/10.1016/j.snb.2015.11.134 (2016).
Google Scholar
Qian, D., Wang, Z., Xiao, Z. & Fang, C.-J. A fluorescent probe for the detection of Cu(II) in water and tumor cells. Inorg. Chem. Commun. https://doi.org/10.1016/j.inoche.2021.108471 (2021).
Google Scholar
Zhang, M. et al. A ratiometric fluorescent probe for sensitive, selective and reversible detection of copper (II) based on riboflavin-stabilized gold nanoclusters. Talanta 117, 399–404. https://doi.org/10.1016/j.talanta.2013.09.034 (2013).
Google Scholar
Zheng, J. et al. A highly sensitive and selective fluorescent Cu2+ sensor synthesized with silica nanoparticles. Nanotechnology 21, 045501. https://doi.org/10.1088/0957-4484/21/4/045501 (2010).
Google Scholar
Liao, B. et al. A facile one-step synthesis of fluorescent silicon quantum dots and their application for detecting Cu2+. RSC Adv. 6, 14465–14467. https://doi.org/10.1039/c5ra25563e (2016).
Google Scholar

