Lee, S., Kang, M., Bae, J.-H., Sohn, J.-H. & Sung, B. H. Bacterial valorization of lignin: strains, enzymes, conversion pathways, biosensors, and perspectives. Front. Bioeng. Biotechnol. https://doi.org/10.3389/fbioe.2019.00209 (2019).
Google Scholar
Kamimura, N., Sakamoto, S., Mitsuda, N., Masai, E. & Kajita, S. Advances in microbial lignin degradation and its applications. Curr. Opin. Biotechnol. 56, 179–186. https://doi.org/10.1016/j.copbio.2018.11.011 (2019).
Google Scholar
Ponnusamy, V. K. et al. A review on lignin structure, pretreatments, fermentation reactions and biorefinery potential. Biores. Technol. 271, 462–472. https://doi.org/10.1016/j.biortech.2018.09.070 (2019).
Google Scholar
Wei, Z. et al. Characterization of thiamine diphosphate-dependent 4-hydroxybenzoylformate decarboxylase enzymes from Rhodococcus jostii RHA1 and Pseudomonas fluorescens Pf-5 involved in degradation of Aryl C2 lignin degradation fragments. Biochemistry 58, 5281–5293. https://doi.org/10.1021/acs.biochem.9b00177 (2019).
Google Scholar
Saito, Y. et al. Screening of fungi for decomposition of lignin-derived products from Japanese cedar. J. Biosci. Bioeng. 126, 573–579. https://doi.org/10.1016/j.jbiosc.2018.05.001 (2018).
Google Scholar
Wang, Y., Shao, Y., Zou, X., Yang, M. & Guo, L. Synergistic action between extracellular products from white-rot fungus and cellulase significantly improves enzymatic hydrolysis. Bioengineered 9, 178–185. https://doi.org/10.1080/21655979.2017.1308991 (2018).
Google Scholar
Voběrková, S., Solčány, V., Vršanská, M. & Adam, V. Immobilization of ligninolytic enzymes from white-rot fungi in cross-linked aggregates. Chemosphere 202, 694–707. https://doi.org/10.1016/j.chemosphere.2018.03.088 (2018).
Google Scholar
Jha, H. In Mycodegradation of Lignocelluloses (ed. Naraian, R.) 35–49 (Springer International Publishing, 2019).
Google Scholar
Bouacem, K. et al. Purification and characterization of two novel peroxidases from the dye-decolorizing fungus Bjerkandera adusta strain CX-9. Int. J. Biol. Macromol. 106, 636–646. https://doi.org/10.1016/j.ijbiomac.2017.08.061 (2018).
Google Scholar
Xu, R. et al. Lignin depolymerization and utilization by bacteria. Biores. Technol. 269, 557–566. https://doi.org/10.1016/j.biortech.2018.08.118 (2018).
Google Scholar
Tian, J.-H., Pourcher, A.-M., Bouchez, T., Gelhaye, E. & Peu, P. Occurrence of lignin degradation genotypes and phenotypes among prokaryotes. Appl. Microbiol. Biotechnol. 98, 9527–9544. https://doi.org/10.1007/s00253-014-6142-4 (2014).
Google Scholar
Barton, N. et al. Enabling the valorization of guaiacol-based lignin: Integrated chemical and biochemical production of cis, cis-muconic acid using metabolically engineered Amycolatopsis sp ATCC 39116. Metab. Eng. 45, 200–210. https://doi.org/10.1016/j.ymben.2017.12.001 (2018).
Google Scholar
Chatterjee, A., DeLorenzo, D. M., Carr, R. & Moon, T. S. Bioconversion of renewable feedstocks by Rhodococcus opacus. Curr. Opin. Biotechnol. 64, 10–16. https://doi.org/10.1016/j.copbio.2019.08.013 (2020).
Google Scholar
Roell, G. W. et al. A concerted systems biology analysis of phenol metabolism in Rhodococcus opacus PD630. Metab. Eng. 55, 120–130. https://doi.org/10.1016/j.ymben.2019.06.013 (2019).
Google Scholar
Bhatia, S. K. et al. Bioconversion of barley straw lignin into biodiesel using Rhodococcus sp. YHY01. Bioresource Technol. 289, 121704. https://doi.org/10.1016/j.biortech.2019.121704 (2019).
Google Scholar
Xu, Z., Qin, L., Cai, M., Hua, W. & Jin, M. Biodegradation of kraft lignin by newly isolated Klebsiella pneumoniae, Pseudomonas putida, and Ochrobactrum tritici strains. Environ. Sci. Pollut. Res. 25, 14171–14181. https://doi.org/10.1007/s11356-018-1633-y (2018).
Google Scholar
Ravi, K., García-Hidalgo, J., Gorwa-Grauslund, M. F. & Lidén, G. Conversion of lignin model compounds by Pseudomonas putida KT2440 and isolates from compost. Appl. Microbiol. Biotechnol. 101, 5059–5070. https://doi.org/10.1007/s00253-017-8211-y (2017).
Google Scholar
Ravi, K., García-Hidalgo, J., Nöbel, M., Gorwa-Grauslund, M. F. & Lidén, G. Biological conversion of aromatic monolignol compounds by a Pseudomonas isolate from sediments of the Baltic Sea. AMB Express 8, 32. https://doi.org/10.1186/s13568-018-0563-x (2018).
Google Scholar
Li, Y.-Y., Liu, H., Xu, Y. & Zhou, N.-Y. A two-component monooxygenase initiates a novel 2-bromo-4-nitrophenol catabolic pathway in newly isolated Cupriavidus sp. strain NyZ375. Int. Biodeter. Biodegrad. 140, 99–105. https://doi.org/10.1016/j.ibiod.2019.03.013 (2019).
Google Scholar
Li, C. et al. Siderophore-mediated iron acquisition enhances resistance to oxidative and aromatic compound stress in cupriavidus necator JMP134. Appl. Environ. Microbiol. 85, e01938-e11918. https://doi.org/10.1128/aem.01938-18 (2019).
Google Scholar
Ihssen, J. et al. Engineered Bacillus pumilus laccase-like multi-copper oxidase for enhanced oxidation of the lignin model compound guaiacol. Protein Eng. Des. Sel. 30, 449–453. https://doi.org/10.1093/protein/gzx026 (2017).
Google Scholar
Huang, X.-F. et al. Isolation and characterization of lignin-degrading bacteria from rainforest soils. Biotechnol. Bioeng. 110, 1616–1626. https://doi.org/10.1002/bit.24833 (2013).
Google Scholar
Narnoliya, L. K., Agarwal, N., Patel, S. N. & Singh, S. P. Kinetic characterization of laccase from Bacillus atrophaeus, and its potential in juice clarification in free and immobilized forms. J. Microbiol. 57, 900–909. https://doi.org/10.1007/s12275-019-9170-z (2019).
Google Scholar
Li, L., Long, L. & Ding, S. Bioproduction of high-concentration 4-vinylguaiacol using whole-cell catalysis harboring an organic solvent-tolerant phenolic acid decarboxylase from Bacillus atrophaeus. Front. Microbiol. https://doi.org/10.3389/fmicb.2019.01798 (2019).
Google Scholar
Zhu, D. et al. Biodegradation of alkaline lignin by Bacillus ligniniphilus L1. Biotechnol. Biofuels 10, 44. https://doi.org/10.1186/s13068-017-0735-y (2017).
Google Scholar
Patel, S. & Gupta, R. S. A phylogenomic and comparative genomic framework for resolving the polyphyly of the genus Bacillus: Proposal for six new genera of Bacillus species, Peribacillus gen. nov., Cytobacillus gen. nov., Mesobacillus gen. nov., Neobacillus gen. nov., Metabacillus gen. nov. and Alkalihalobacillus gen. nov.. Int. J. Syst. Evolut. Microbiol. 70, 406–438. https://doi.org/10.1099/ijsem.0.003775 (2020).
Google Scholar
Hayaishi, O., Nozaki, M. & Abbott, M. T. In The Enzymes Vol. 12 (ed. Boyer, P. D.) 119–189 (Academic Press, 1975).
Kojima, Y., Itada, N. & Hayaishi, O. Metapyrocatechase: a new catechol-cleaving enzyme. J. Biol. Chem. 236, 2223–2228 (1961).
Google Scholar
Li, C. et al. Recent advancement in lignin biorefinery: With special focus on enzymatic degradation and valorization. Biores. Technol. 291, 121898. https://doi.org/10.1016/j.biortech.2019.121898 (2019).
Google Scholar
Bugg, T. D. & Lin, G. Solving the riddle of the intradiol and extradiol catechol dioxygenases: How do enzymes control hydroperoxide rearrangements?. Chem. Commun. 37, 941–952 (2001).
Google Scholar
Guengerich, F. P. & Yoshimoto, F. K. Formation and cleavage of C-C bonds by enzymatic oxidation-reduction reactions. Chem. Rev. 118, 6573–6655. https://doi.org/10.1021/acs.chemrev.8b00031 (2018).
Google Scholar
Wang, Y., Li, J. & Liu, A. Oxygen activation by mononuclear nonheme iron dioxygenases involved in the degradation of aromatics. J. Biol. Inorg. Chem. 22, 395–405. https://doi.org/10.1007/s00775-017-1436-5 (2017).
Google Scholar
Sahu, S. & Goldberg, D. P. Activation of dioxygen by iron and manganese complexes: A heme and nonheme perspective. J. Am. Chem. Soc. 138, 11410–11428. https://doi.org/10.1021/jacs.6b05251 (2016).
Google Scholar
Hassan, H. A. & Aly, A. A. Isolation and characterization of three novel catechol 2,3-dioxygenase from three novel haloalkaliphilic BTEX-degrading Pseudomonas strains. Int. J. Biol. Macromol. 106, 1107–1114. https://doi.org/10.1016/j.ijbiomac.2017.08.113 (2018).
Google Scholar
Liu, Z. et al. Highly sensitive microbial biosensor based on recombinant Escherichia coli overexpressing catechol 2,3-dioxygenase for reliable detection of catechol. Biosens. Bioelectron. 126, 51–58. https://doi.org/10.1016/j.bios.2018.10.050 (2019).
Google Scholar
Kotake, T. et al. Purification and partial characterization of the extradiol dioxygenase, 2′-carboxy-2,3-dihydroxybiphenyl 1,2-dioxygenase, in the fluorene degradation pathway from Rhodococcus sp strain DFA3. Biosci. Biotechnol. Biochem. 80, 719–725. https://doi.org/10.1080/09168451.2015.1123605 (2016).
Google Scholar
Zhu, D. et al. Insight into Depolymerization Mechanism of Bacterial Laccase for Lignin. ACS Sustain. Chem. Eng. 8, 12920–12933. https://doi.org/10.1021/acssuschemeng.0c03457 (2020).
Google Scholar
Bugg, T. D., Ahmad, M., Hardiman, E. M. & Singh, R. The emerging role for bacteria in lignin degradation and bio-product formation. Curr. Opin. Biotechnol. 22, 394–400 (2011).
Google Scholar
Bugg, T. D. & Winfield, C. J. Enzymatic cleavage of aromatic rings: mechanistic aspects of the catechol dioxygenases and later enzymes of bacterial oxidative cleavage pathways. Nat. Prod. Rep. 15, 513–530 (1998).
Google Scholar
Gao, J., Ellis, L. B. & Wackett, L. P. The University of Minnesota biocatalysis/biodegradation database: improving public access. Nucleic Acids Res. 38, D488–D491 (2010).
Google Scholar
Hupert-Kocurek, K., Guzik, U. & Wojcieszyńska, D. Characterization of catechol 2, 3-dioxygenase from Planococcus sp. strain S5 induced by high phenol concentration. Acta Biochim. Pol. 59, 345–351 (2012).
Google Scholar
Kim, Y., Choi, B., Lee, J., Chang, H. & Rak Min, K. Characterization of catechol 2,3-dioxygenases. Biochem. Biophys. Res. Commun. 183, 77–82. https://doi.org/10.1016/0006-291X(92)91611-S (1992).
Google Scholar
Takeo, M., Nishimura, M., Shirai, M., Takahashi, H. & Negoro, S. Purification and characterization of catechol 2, 3-dioxygenase from the aniline degradation pathway of Acinetobacter sp. YAA and its mutant enzyme, which resists substrate inhibition. Biosci. Biotechnol. Biochem. 0706060442–0706060442 (2007).
Ravi, K. et al. Physiological characterization and sequence analysis of a syringate-consuming Actinobacterium. Biores. Technol. 285, 121327. https://doi.org/10.1016/j.biortech.2019.121327 (2019).
Google Scholar
Hupert-Kocurek, K., Wojcieszyńska, D. & Guzik, U. Activity of a carboxyl-terminal truncated form of catechol 2,3-dioxygenase from Planococcus sp. S5. ScientificWorldJournal 2015, 598518. https://doi.org/10.1155/2014/598518 (2014).
Google Scholar
Bayly, R. C., Dagley, S. & Gibson, D. T. The metabolism of cresols by species of Pseudomonas. Biochem. J. 101, 293–301. https://doi.org/10.1042/bj1010293 (1966).
Google Scholar
Guo, G. et al. Isolation and characterization of two novel halotolerant Catechol 2, 3-dioxygenases from a halophilic bacterial consortium. Sci. Rep. 5, 17603. https://doi.org/10.1038/srep17603 (2015).
Google Scholar
Tai, H. H. & Sih, C. J. 3,4-Dihydroxy-9,10-secoandrosta-1,3,5(10)-triene-9,17-dione 4,5-Dioxygenase from Nocardia restrictus: II. KINETIC STUDIES. J. Biol. Chem. 245, 5072–5078. https://doi.org/10.1016/S0021-9258(18)62819-4 (1970).
Google Scholar
Kunz, D. A. & Chapman, P. J. Catabolism of pseudocumene and 3-ethyltoluene by Pseudomonas putida (arvilla) mt-2: evidence for new functions of the TOL (pWWO) plasmid. J. Bacteriol. 146, 179–191 (1981).
Google Scholar
Velupillaimani, D. & Muthaiyan, A. Potential of Bacillus subtilis from marine environment to degrade aromatic hydrocarbons. Environ. Sustain. 2, 381–389. https://doi.org/10.1007/s42398-019-00080-2 (2019).
Google Scholar
Woo, H. L. & Hazen, T. C. Enrichment of bacteria from Eastern Mediterranean Sea involved in lignin degradation via the phenylacetyl-CoA pathway. Front. Microbiol. 9, 922 (2018).
Google Scholar
Silva, A. S. et al. Enzymatic activity of catechol 1, 2-dioxygenase and catechol 2, 3-dioxygenase produced by Gordonia polyisoprenivorans. Quim. Nova 35, 1587–1592 (2012).
Google Scholar
Wojcieszyńska, D., Hupert-Kocurek, K. & Guzik, U. Factors affecting activity of catechol 2, 3-dioxygenase from 2-chlorophenol-degrading Stenotrophomonas maltophilia strain KB2. Biocatal. Biotransform. 31, 141–147 (2013).
Google Scholar
Xi, L., Liu, D., Wang, L., Qiao, N. & Liu, J. Catechol 2,3-dioxygenase from a new phenolic compound degrader Thauera sp. K11: purification and biochemical characterization. J. Basic Microbiol. 58, 255–262. https://doi.org/10.1002/jobm.201700566 (2018).
Google Scholar
Boldt, Y. R., Sadowsky, M. J., Ellis, L. B., Que, L. & Wackett, L. P. A manganese-dependent dioxygenase from Arthrobacter globiformis CM-2 belongs to the major extradiol dioxygenase family. J. Bacteriol. 177, 1225–1232 (1995).
Google Scholar
Hatta, T., Mukerjee-Dhar, G., Damborsky, J., Kiyohara, H. & Kimbara, K. Characterization of a novel thermostable Mn (II)-dependent 2, 3-dihydroxybiphenyl 1, 2-dioxygenase from a polychlorinated biphenyl-and naphthalene-degrading Bacillus sp. JF8. J. Biol. Chem. 278, 21483–21492 (2003).
Google Scholar
Que, L., Widom, J. & Crawford, R. 3, 4-Dihydroxyphenylacetate 2, 3-dioxygenase. A manganese (II) dioxygenase from Bacillus brevis. J. Biol. Chem. 256, 10941–10944 (1981).
Google Scholar
Whiting, A. K., Boldt, Y. R., Hendrich, M. P., Wackett, L. P. & Que, L. Manganese (II)-dependent extradiol-cleaving catechol dioxygenase from Arthrobacter globiformis CM-2. Biochemistry 35, 160–170 (1996).
Google Scholar
Vetting, M. W., Wackett, L. P., Que, L., Lipscomb, J. D. & Ohlendorf, D. H. Crystallographic comparison of manganese-and iron-dependent homoprotocatechuate 2, 3-dioxygenases. J. Bacteriol. 186, 1945–1958 (2004).
Google Scholar
Cho, H. J. et al. Substrate binding mechanism of a type I extradiol dioxygenase. J. Biol. Chem. 285, 34643–34652 (2010).
Google Scholar
Tam, N. K. et al. The intestinal life cycle of Bacillus subtilis and close relatives. J. Bacteriol. 188, 2692–2700 (2006).
Google Scholar
Happe, B., Eltis, L., Poth, H., Hedderich, R. & Timmis, K. Characterization of 2, 2’, 3-trihydroxybiphenyl dioxygenase, an extradiol dioxygenase from the dibenzofuran-and dibenzo-p-dioxin-degrading bacterium Sphingomonas sp. strain RW1. J. Bacteriol. 175, 7313–7320 (1993).
Google Scholar
Yang, X., Xie, F., Zhang, G., Shi, Y. & Qian, S. Purification, characterization, and substrate specificity of two 2,3-dihydroxybiphenyl 1,2-dioxygenase from Rhodococcus sp. R04, showing their distinct stability at various temperature. Biochimie 90, 1530–1538. https://doi.org/10.1016/j.biochi.2008.05.020 (2008).
Google Scholar
Asturias, J. A., Eltis, L. D., Prucha, M. & Timmis, K. N. Analysis of three 2,3-dihydroxybiphenyl 1,2-dioxygenases found in Rhodococcus globerulus. P6 Identification of a new family of extradiol dioxygenases. J. Biol. Chem. 269, 7807–7815. https://doi.org/10.1016/S0021-9258(17)37358-1 (1994).
Google Scholar
Eltis, L. D., Hofmann, B., Hecht, H. J., Lünsdorf, H. & Timmis, K. N. Purification and crystallization of 2,3-dihydroxybiphenyl 1,2-dioxygenase. J. Biol. Chem. 268, 2727–2732. https://doi.org/10.1016/S0021-9258(18)53834-5 (1993).
Google Scholar
Taira, K. et al. Cloning and nucleotide sequence of the 2, 3-dihydroxybiphenyl dioxygenase gene from the PCB-degrading strain of Pseudomonas paucimobilis Q1. Biochemistry 27, 3990–3996 (1988).
Google Scholar
Furukawa, K. & Arimura, N. Purification and properties of 2, 3-dihydroxybiphenyl dioxygenase from polychlorinated biphenyl-degrading Pseudomonas pseudoalcaligenes and Pseudomonas aeruginosa carrying the cloned bphC gene. J. Bacteriol. 169, 924–927 (1987).
Google Scholar
Kita, A. et al. An archetypical extradiol-cleaving catecholic dioxygenase: the crystal structure of catechol 2, 3-dioxygenase (metapyrocatechase) from Pseudomonas putida mt-2. Structure 7, 25–34 (1999).
Google Scholar
Okuta, A., Ohnishi, K., Yagame, S. & Harayama, S. Intersubunit interaction and catalytic activity of catechol 2,3-dioxygenases. Biochem. J. 371, 557–564. https://doi.org/10.1042/BJ20021657 (2003).
Google Scholar
Torshin, I. Activating oligomerization as intermediate level of signal transduction: analysis of protein-protein contacts and active sites in several glycolytic enzymes. Front. Biosci. 4, D557-570 (1999).
Google Scholar
Taguchi, K., Motoyama, M., Iida, T. & Kudo, T. Polychlorinated biphenyl/biphenyl degrading gene clusters in Rhodococcus sp. K37, HA99, and TA431 are different from well-known bph gene clusters of Rhodococci. Biosci. Biotechnol. Biochem. 71, 1136–1144 (2007).
Google Scholar
Kirk, T. K. & Farrell, R. L. Enzymatic” combustion”: the microbial degradation of lignin. Annu. Rev. Microbiol. 41, 465–501 (1987).
Google Scholar
Floudas, D. et al. The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science 336, 1715–1719 (2012).
Google Scholar
Bugg, T. D., Ahmad, M., Hardiman, E. M. & Rahmanpour, R. Pathways for degradation of lignin in bacteria and fungi. Nat. Prod. Rep. 28, 1883–1896 (2011).
Google Scholar
Linger, J. G. et al. Lignin valorization through integrated biological funneling and chemical catalysis. Proc. Natl. Acad. Sci. 111, 12013–12018 (2014).
Google Scholar
Xu, Z., Lei, P., Zhai, R., Wen, Z. & Jin, M. Recent advances in lignin valorization with bacterial cultures: microorganisms, metabolic pathways, and bio-products. Biotechnol. Biofuels 12, 32 (2019).
Google Scholar
Saitou, N. & Nei, M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425 (1987).
Google Scholar
Zuckerkandl, E. & Pauling, L. In Evolving Genes and Proteins (eds Bryson, V. & Vogel, H. J.) 97–166 (Academic Press, 1965).
Google Scholar
Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549. https://doi.org/10.1093/molbev/msy096 (2018).
Google Scholar
Mevarech, M., Frolow, F. & Gloss, L. M. Halophilic enzymes: Proteins with a grain of salt. Biophys. Chem. 86, 155–164 (2000).
Google Scholar
Lee, J., Min, K. R. & Kim, Y. Cloning and overexpression of methylcatechol 2, 3-dioxygenase gene from toluene-degradingPseudomonas putida mt-2 (pWWO). Arch. Pharmacal Res. 15, 360–364 (1992).
Google Scholar
Baggi, G., Barbieri, P., Galli, E. & Tollari, S. Isolation of a Pseudomonas stutzeri strain that degrades o-xylene. Appl. Environ. Microbiol. 53, 2129–2132 (1987).
Google Scholar
Cerdan, P., Wasserfallen, A., Rekik, M., Timmis, K. N. & Harayama, S. Substrate specificity of catechol 2, 3-dioxygenase encoded by TOL plasmid pWW0 of Pseudomonas putida and its relationship to cell growth. J. Bacteriol. 176, 6074–6081 (1994).
Google Scholar
Cerdan, P., Rekik, M. & Harayama, S. Substrate specificity differences between two catechol 2,3-dioxygenases encoded by the TOL and NAH Plasmids from Pseudomonas putida. Eur. J. Biochem. 229, 113–118. https://doi.org/10.1111/j.1432-1033.1995.0113l.x (1995).
Google Scholar
Junca, H., Plumeier, I., Hecht, H.-J. & Pieper, D. H. Difference in kinetic behaviour of catechol 2, 3-dioxygenase variants from a polluted environment. Microbiology 150, 4181–4187 (2004).
Google Scholar
Kobayashi, T. et al. Overexpression of Pseudomonas putida catechol 2,3-dioxygenase with high specific activity by genetically engineered Escherichia coli. The Journal of Biochemistry 117, 614–622. https://doi.org/10.1093/oxfordjournals.jbchem.a124753 (1995).
Google Scholar
Zhang, X. et al. A new thermophilic extradiol dioxygenase promises biodegradation of catecholic pollutants. J. Hazard. Mater. 422, 126860. https://doi.org/10.1016/j.jhazmat.2021.126860 (2022).
Google Scholar
Ishida, T., Tanaka, H. & Horiike, K. Quantitative structure-activity relationship for the cleavage of C3/C4-substituted catechols by a prototypal extradiol catechol dioxygenase with broad substrate specificity. J. Biochem. 135, 721–730 (2004).
Google Scholar

