Preloader

A microenvironment-inspired synthetic three-dimensional model for pancreatic ductal adenocarcinoma organoids

  • 1.

    Egeblad, M., Nakasone, E. S. & Werb, Z. Tumors as organs: complex tissues that interface with the entire organism. Dev. Cell 18, 884–901 (2010).

    CAS 
    Article 

    Google Scholar 

  • 2.

    Feig, C. et al. The pancreas cancer microenvironment. Clin. Cancer Res. 18, 4266–4276 (2012).

    CAS 
    Article 

    Google Scholar 

  • 3.

    Sahai, E. et al. A framework for advancing our understanding of cancer-associated fibroblasts. Nat. Rev. Cancer 6, 174–186 (2020).

    Article 
    CAS 

    Google Scholar 

  • 4.

    DeNardo, D. G. & Ruffell, B. Macrophages as regulators of tumour immunity and immunotherapy. Nat. Rev. Immunol. 7, 369–382 (2019).

    Article 
    CAS 

    Google Scholar 

  • 5.

    Biankin, A. V. et al. Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature 491, 399–405 (2012).

    CAS 
    Article 

    Google Scholar 

  • 6.

    Miller, B. W. et al. Targeting the LOX/hypoxia axis reverses many of the features that make pancreatic cancer deadly: inhibition of LOX abrogates metastasis and enhances drug efficacy. EMBO Mol. Med. 7, 1063–1076 (2015).

    CAS 
    Article 

    Google Scholar 

  • 7.

    Jiang, H. et al. Targeting focal adhesion kinase renders pancreatic cancers responsive to checkpoint immunotherapy. Nat. Med. 22, 851–860 (2016).

  • 8.

    Shi, Y. et al. Targeting LIF-mediated paracrine interaction for pancreatic cancer therapy and monitoring. Nature 569, 131–135 (2019).

    CAS 
    Article 

    Google Scholar 

  • 9.

    Sherman, M. H. et al. Vitamin D receptor-mediated stromal reprogramming suppresses pancreatitis and enhances pancreatic cancer therapy. Cell 159, 80–93 (2014).

    CAS 
    Article 

    Google Scholar 

  • 10.

    Boj, S. F. et al. Organoid models of human and mouse ductal pancreatic cancer. Cell 160, 324–338 (2015).

    CAS 
    Article 

    Google Scholar 

  • 11.

    Tuveson, D. & Clevers, H. Cancer modeling meets human organoid technology. Science 364, 952–955 (2019).

    CAS 
    Article 

    Google Scholar 

  • 12.

    Drost, J. & Clevers, H. Organoids in cancer research. Nat. Rev. Cancer 18, 407–418 (2018).

    CAS 
    Article 

    Google Scholar 

  • 13.

    Hughes, C. S., Postovit, L. M. & Lajoie, G. A. Matrigel: a complex protein mixture required for optimal growth of cell culture. Proteomics 10, 1886–1890 (2010).

    CAS 
    Article 

    Google Scholar 

  • 14.

    Brassard, J. A. & Lutolf, M. P. Engineering stem cell self-organization to build better organoids. Stem Cell 24, 860–876 (2019).

    CAS 

    Google Scholar 

  • 15.

    Socovich, A. M. & Naba, A. The cancer matrisome: from comprehensive characterization to biomarker discovery. Semin. Cell Dev. Biol. 89, 157–166 (2019).

    CAS 
    Article 

    Google Scholar 

  • 16.

    Cook, C. D. et al. Local remodeling of synthetic extracellular matrix microenvironments by co-cultured endometrial epithelial and stromal cells enables long-term dynamic physiological function. Integr. Biol. 9, 271–289 (2017).

    CAS 
    Article 

    Google Scholar 

  • 17.

    Gjorevski, N. et al. Designer matrices for intestinal stem cell and organoid culture. Nature 539, 560–564 (2016).

    CAS 
    Article 

    Google Scholar 

  • 18.

    Kratochvil, M. J. et al. Engineered materials for organoid systems. Nat. Rev. Mater. 4, 606–622 (2019).

    CAS 
    Article 

    Google Scholar 

  • 19.

    Valdez, J. et al. On-demand dissolution of modular, synthetic extracellular matrix reveals local epithelial-stromal communication networks. Biomaterials 130, 90–103 (2017).

    CAS 
    Article 

    Google Scholar 

  • 20.

    Naba, A., Clauser, K. R. & Hynes, R. O. Enrichment of extracellular matrix proteins from tissues and digestion into peptides for mass spectrometry analysis. J. Vis. Exp. 101, e53057 (2015).

    Google Scholar 

  • 21.

    Hingorani, S. R. et al. Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice. Cancer Cell 7, 469–483 (2005).

    CAS 
    Article 

    Google Scholar 

  • 22.

    Hruban, R. H. et al. Pathology of genetically engineered mouse models of pancreatic exocrine cancer: consensus report and recommendations. Cancer Res. 66, 95–196 (2006).

    CAS 
    Article 

    Google Scholar 

  • 23.

    Schönhuber, N. et al. A next-generation dual-recombinase system for time- and host-specific targeting of pancreatic cancer. Nat. Med. 20, 1340–1347 (2014).

    Article 
    CAS 

    Google Scholar 

  • 24.

    Naba, A. et al. The matrisome: in silico definition and in vivo characterization by proteomics of normal and tumor extracellular matrices. Mol. Cell Proteom. 11, M111.014647 (2012).

    Article 
    CAS 

    Google Scholar 

  • 25.

    Tian, C. et al. Proteomic analyses of ECM during pancreatic ductal adenocarcinoma progression reveal different contributions by tumor and stromal cells. Proc. Natl Acad. Sci. USA 116, 19609–19618 (2019).

    CAS 
    Article 

    Google Scholar 

  • 26.

    Horton, E. R. et al. Definition of a consensus integrin adhesome and its dynamics during adhesion complex assembly and disassembly. Nat. Cell Biol. 17, 1577–1587 (2015).

    CAS 
    Article 

    Google Scholar 

  • 27.

    Humphries, J. D. Integrin ligands at a glance. J. Cell. Sci. 119, 3901–3903 (2006).

    CAS 
    Article 

    Google Scholar 

  • 28.

    Hamidi, H. & Ivaska, J. Every step of the way: integrins in cancer progression and metastasis. Nat. Rev. Cancer 18, 533–548 (2018).

    CAS 
    Article 

    Google Scholar 

  • 29.

    Jones, M. C. et al. Isolation of integrin-based adhesion complexes. Curr. Protoc. Cell Biol. 66, 9.8.1–9.8.15 (2015).

    Article 

    Google Scholar 

  • 30.

    Robertson, J. et al. Defining the phospho-adhesome through the phosphoproteomic analysis of integrin signalling. Nat. Commun. 6, 6265 (2015).

    CAS 
    Article 

    Google Scholar 

  • 31.

    Takizawa, M. et al. Mechanistic basis for the recognition of laminin-511 by α6β1 integrin. Sci. Adv. 3, e1701497 (2017).

    Article 
    CAS 

    Google Scholar 

  • 32.

    Samarelli, A. V. et al. Neuroligin 1 induces blood vessel maturation by cooperating with the α6 integrin. J. Biol. Chem. 289, 19466–19476 (2014).

    CAS 
    Article 

    Google Scholar 

  • 33.

    Aumailley, M., Timpl, R. & Sonnenberg, A. Antibody to integrin α6 subunit specifically inhibits cell-binding to laminin fragment 8. Exp. Cell Res. 188, 55–60 (1990).

    CAS 
    Article 

    Google Scholar 

  • 34.

    Lee, S. P. et al. Sickle cell adhesion to laminin: potential role for the α5 chain. Blood 92, 2951–2958 (1998).

    CAS 
    Article 

    Google Scholar 

  • 35.

    Hernandez-Gordillo, V. et al. Fully synthetic matrices for in vitro culture of primary human intestinal enteroids and endometrial organoids. Biomaterials 254, 120125 (2020).

    CAS 
    Article 

    Google Scholar 

  • 36.

    Johnson, G. & Moore, S. W. Identification of a structural site on acetylcholinesterase that promotes neurite outgrowth and binds laminin-1 and collagen IV. Biochem. Biophys. Res. Commun. 319, 448–455 (2004).

    CAS 
    Article 

    Google Scholar 

  • 37.

    Brown, A. et al. Engineering PEG-based hydrogels to foster efficient endothelial network formation in free-swelling and confined microenvironments. Biomaterials 243, 119921 (2020).

    CAS 
    Article 

    Google Scholar 

  • 38.

    Knight, C. G. et al. The collagen-binding A-domains of integrins α1β1 and α2β1 recognize the same specific amino acid sequence, GFOGER, in native (triple-helical) collagens. J. Biol. Chem. 275, 35–40 (2000).

    CAS 
    Article 

    Google Scholar 

  • 39.

    Kuhlman, W., Taniguchi, I., Griffith, L. G. & Mayes, A. M. Interplay between PEO tether length and ligand spacing governs cell spreading on RGD-modified PMMA-g-PEO comb copolymers. Biomacromolecules 8, 3206–3213 (2007).

    CAS 
    Article 

    Google Scholar 

  • 40.

    Eble, J. A., Bruckner, P. & Mayer, U. Vipera lebetina venom contains two disintegrins inhibiting laminin-binding β1 integrins. J. Biol. Chem. 278, 26488–26496 (2003).

    CAS 
    Article 

    Google Scholar 

  • 41.

    Cavaco, A. C. M. et al. The interaction between laminin-332 and α3β1 integrin determines differentiation and maintenance of CAFs, and supports invasion of pancreatic duct adenocarcinoma cells. Cancers 11, 14–20 (2019).

    CAS 
    Article 

    Google Scholar 

  • 42.

    Gasmi, A. et al. Amino acid structure and characterization of a heterodimeric disintegrin from Vipera lebetina venom. Biochim. Biophys. Acta 1547, 51–56 (2001).

    CAS 
    Article 

    Google Scholar 

  • 43.

    Arruda Macêdo, J. K., Fox, J. W. & de Souza Castro, M. Disintegrins from snake venoms and their applications in cancer research and therapy. Curr. Protein Pept. Sci. 16, 532–548 (2015).

    Article 
    CAS 

    Google Scholar 

  • 44.

    Tiriac, H. et al. Organoid profiling identifies common responders to chemotherapy in pancreatic cancer. Cancer Discov. 8, 1112–1129 (2018).

    CAS 
    Article 

    Google Scholar 

  • 45.

    Levental, K. R. et al. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139, 891–906 (2009).

    CAS 
    Article 

    Google Scholar 

  • 46.

    Laklai, H. et al. Genotype tunes pancreatic ductal adenocarcinoma tissue tension to induce matricellular fibrosis and tumor progression. Nat. Med. 22, 497–505 (2016).

    CAS 
    Article 

    Google Scholar 

  • 47.

    Rice, A. J. et al. Matrix stiffness induces epithelial–mesenchymal transition and promotes chemoresistance in pancreatic cancer cells. Oncogenesis 6, e352 (2019).

    Article 
    CAS 

    Google Scholar 

  • 48.

    Rubiano, A. et al. Viscoelastic properties of human pancreatic tumors and in vitro constructs to mimic mechanical properties. Acta Biomaterialia 67, 331–340 (2018).

    Article 

    Google Scholar 

  • 49.

    Panciera, T. et al. Reprogramming normal cells into tumour precursors requires ECM stiffness and oncogene-mediated changes of cell mechanical properties. Nat. Mater. 19, 797–806 (2020).

    CAS 
    Article 

    Google Scholar 

  • 50.

    Öhlund, D. et al. Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer. J. Exp. Med. 214, 579–596 (2017).

    Article 
    CAS 

    Google Scholar 

  • 51.

    Elyada, E. et al. Cross-species single-cell analysis of pancreatic ductal adenocarcinoma reveals antigen-presenting cancer-associated fibroblasts. Cancer Discov. 9, 1102–1123 (2019).

    CAS 
    Article 

    Google Scholar 

  • 52.

    Wu, J. et al. Generation of a pancreatic cancer model using a Pdx1-Flp recombinase knock-in allele. PLoS ONE 12, e0184984 (2017).

    Article 
    CAS 

    Google Scholar 

  • 53.

    Ouyang, H. et al. Immortal human pancreatic duct epithelial cell lines with near normal genotype and phenotype. Am. J. Pathol. 157, 1623–1631 (2010).

    Article 

    Google Scholar 

  • 54.

    Furukawa, T. et al. Long-term culture and immortalization of epithelial cells from normal adult human pancreatic ducts transfected by the E6E7 gene of human papilloma virus 16. Am. J. Pathol. 148, 1763–1770 (1996).

    CAS 

    Google Scholar 

  • 55.

    Huch, M. et al. Unlimited in vitro expansion of adult bi-potent pancreas progenitors through the Lgr5/R-spondin axis. EMBO J. 32, 2708–2721 (2013).

    CAS 
    Article 

    Google Scholar 

  • 56.

    Bankhead, P. et al. QuPath: open source software for digital pathology image analysis. Sci. Rep. 7, 16878 (2017).

  • 57.

    Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    CAS 
    Article 

    Google Scholar 

  • 58.

    Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods 25, 402–408 (2001).

    CAS 
    Article 

    Google Scholar 

  • 59.

    Qin, X. et al. Cell-type-specific signaling networks in heterocellular organoids. Nat. Methods 17, 335–342 (2020).

    CAS 
    Article 

    Google Scholar 

  • 60.

    Durinck, S., Spellman, P. T., Birney, E. & Huber, W. Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt. Nat. Protoc. 4, 1184–1191 (2009).

    CAS 
    Article 

    Google Scholar 

  • 61.

    Cerami, E. et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2, 401–404 (2012).

    Article 

    Google Scholar 

  • 62.

    Gao, J. et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal 6, pl1 (2013).

    Article 
    CAS 

    Google Scholar 

  • 63.

    Naba, A. et al. The extracellular matrix: tools and insights for the ‘omics’ era. Matrix Biol. 49, 10–24 (2016).

    CAS 
    Article 

    Google Scholar 

  • 64.

    Bult, C. J. et al. Mouse genome database (MGD) 2019. Nucleic Acids Res. 47, D801–D806 (2019).

    CAS 
    Article 

    Google Scholar 

  • 65.

    Zhang, H., Meltzer, P. & Davis, S. RCircos: an R package for Circos 2D track plots. BMC Bioinformatics 14, 244–245 (2013).

    Article 

    Google Scholar 

  • 66.

    Gu, Z., Gu, L., Eils, R., Schlesner, M. & Brors, B. Circlize implements and enhances circular visualization in R. Bioinformatics 30, 2811–2812 (2014).

    CAS 
    Article 

    Google Scholar 

  • 67.

    Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).

    CAS 
    Article 

    Google Scholar 

  • 68.

    Szklarczyk, D. et al. The STRING database in 2017: quality-controlled protein–protein association networks, made broadly accessible. Nucleic Acids Res. 45, D362–D368 (2017).

    CAS 
    Article 

    Google Scholar 

  • 69.

    Pérez-Riverol, Y. et al. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 47, D442–D450 (2018).

    Article 
    CAS 

    Google Scholar 

  • Source link