Preloader

A lysosome-targeted DNA nanodevice selectively targets macrophages to attenuate tumours

  • 1.

    Cassetta, L. & Pollard, J. W. Targeting macrophages: therapeutic approaches in cancer. Nat. Rev. Drug Discov. 17, 887–904 (2018).

    CAS 
    Article 

    Google Scholar 

  • 2.

    Noy, R. & Pollard, J. W. Tumor-associated macrophages: from mechanisms to therapy. Immunity 41, 49–61 (2014).

    CAS 
    Article 

    Google Scholar 

  • 3.

    Mantovani, A., Marchesi, F., Malesci, A., Laghi, L. & Allavena, P. Tumour-associated macrophages as treatment targets in oncology. Nat. Rev. Clin. Oncol. 14, 399–416 (2017).

    CAS 
    Article 

    Google Scholar 

  • 4.

    Poh, A. R. & Ernst, M. Targeting macrophages in cancer: from bench to bedside. Front. Oncol. 8, 49 (2018).

    Article 

    Google Scholar 

  • 5.

    Cotechini, T., Medler, T. R. & Coussens, L. M. Myeloid cells as targets for therapy in solid tumors. Cancer J. 21, 343–350 (2015).

    CAS 
    Article 

    Google Scholar 

  • 6.

    Gentles, A. J. et al. The prognostic landscape of genes and infiltrating immune cells across human cancers. Nat. Med. 21, 938–945 (2015).

    CAS 
    Article 

    Google Scholar 

  • 7.

    Takeya, M. & Komohara, Y. Role of tumor-associated macrophages in human malignancies: friend or foe? Pathol. Int. 66, 491–505 (2016).

    Article 

    Google Scholar 

  • 8.

    Vitale, I., Manic, G., Coussens, L. M., Kroemer, G. & Galluzzi, L. Macrophages and metabolism in the tumor microenvironment. Cell Metab. 30, 36–50 (2019).

    CAS 
    Article 

    Google Scholar 

  • 9.

    DeNardo, D. G. & Ruffell, B. Macrophages as regulators of tumour immunity and immunotherapy. Nat. Rev. Immunol. 19, 369–382 (2019).

    CAS 
    Article 

    Google Scholar 

  • 10.

    Singhal, S. et al. Human tumor-associated monocytes/macrophages and their regulation of T cell responses in early-stage lung cancer. Sci. Transl. Med. 11, eaat1500 (2019).

    CAS 
    Article 

    Google Scholar 

  • 11.

    Fehres, C. M., Unger, W. W. J., Garcia-Vallejo, J. J. & van Kooyk, Y. Understanding the biology of antigen cross-presentation for the design of vaccines against cancer. Front. Immunol. 5, 149 (2014).

    Article 
    CAS 

    Google Scholar 

  • 12.

    Kurts, C., Robinson, B. W. S. & Knolle, P. A. Cross-priming in health and disease. Nat. Rev. Immunol. 10, 403–414 (2010).

    CAS 
    Article 

    Google Scholar 

  • 13.

    Joffre, O. P., Segura, E., Savina, A. & Amigorena, S. Cross-presentation by dendritic cells. Nat. Rev. Immunol. 12, 557–569 (2012).

    CAS 
    Article 

    Google Scholar 

  • 14.

    Cruz-Leal, Y. et al. The vacuolar pathway in macrophages plays a major role in antigen cross-presentation induced by the pore-forming protein sticholysin II encapsulated into liposomes. Front. Immunol. 9, 2473 (2018).

    Article 
    CAS 

    Google Scholar 

  • 15.

    Embgenbroich, M. & Burgdorf, S. Current concepts of antigen cross-presentation. Front. Immunol. 9, 1643 (2018).

    Article 
    CAS 

    Google Scholar 

  • 16.

    Shen, L., Sigal, L. J., Boes, M. & Rock, K. L. Important role of cathepsin S in generating peptides for TAP-independent MHC class I crosspresentation in vivo. Immunity 21, 155–165 (2004).

    CAS 
    Article 

    Google Scholar 

  • 17.

    Surana, S., Bhat, J. M., Koushika, S. P. & Krishnan, Y. An autonomous DNA nanomachine maps spatiotemporal pH changes in a multicellular living organism. Nat. Commun. 2, 340 (2011).

    Article 
    CAS 

    Google Scholar 

  • 18.

    Chakraborty, K., Leung, K. & Krishnan, Y. High lumenal chloride in the lysosome is critical for lysosome function. Elife 6, e28862 (2017).

    Article 

    Google Scholar 

  • 19.

    Narayanaswamy, N. et al. A pH-correctable, DNA-based fluorescent reporter for organellar calcium. Nat. Methods 16, 95–102 (2019).

    CAS 
    Article 

    Google Scholar 

  • 20.

    Leung, K., Chakraborty, K., Saminathan, A. & Krishnan, Y. A DNA nanomachine chemically resolves lysosomes in live cells. Nat. Nanotechnol. 14, 176–183 (2019).

    CAS 
    Article 

    Google Scholar 

  • 21.

    Dan, K., Veetil, A. T., Chakraborty, K. & Krishnan, Y. DNA nanodevices map enzymatic activity in organelles. Nat. Nanotechnol. 14, 252–259 (2019).

    CAS 
    Article 

    Google Scholar 

  • 22.

    Veetil, A. T. et al. DNA-based fluorescent probes of NOS2 activity in live brains. Proc. Natl Acad. Sci. USA 117, 14694–14702 (2020).

    CAS 
    Article 

    Google Scholar 

  • 23.

    Becker, L. et al. Unique proteomic signatures distinguish macrophages and dendritic cells. PLoS One 7, e33297 (2012).

    CAS 
    Article 

    Google Scholar 

  • 24.

    Odegaard, J. I. & Chawla, A. Alternative macrophage activation and metabolism. Annu. Rev. Pathol. 6, 275–297 (2011).

    CAS 
    Article 

    Google Scholar 

  • 25.

    Rodríguez-Prados, J.-C. et al. Substrate fate in activated macrophages: a comparison between innate, classic, and alternative activation. J. Immunol. 185, 605–614 (2010).

    Article 
    CAS 

    Google Scholar 

  • 26.

    Geissmann, F., Gordon, S., Hume, D. A., Mowat, A. M. & Randolph, G. J. Unravelling mononuclear phagocyte heterogeneity. Nat. Rev. Immunol. 10, 453–460 (2010).

    CAS 
    Article 

    Google Scholar 

  • 27.

    Xiong, H. et al. Anti-PD-L1 treatment results in functional remodeling of the macrophage compartment. Cancer Res. 79, 1493–1506 (2019).

    CAS 
    Article 

    Google Scholar 

  • 28.

    Lawrence, T. & Natoli, G. Transcriptional regulation of macrophage polarization: enabling diversity with identity. Nat. Rev. Immunol. 11, 750–761 (2011).

    CAS 
    Article 

    Google Scholar 

  • 29.

    Martinez, F. O. & Gordon, S. The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep. 6, 13 (2014).

    Article 

    Google Scholar 

  • 30.

    Schroder, K. et al. Conservation and divergence in Toll-like receptor 4-regulated gene expression in primary human versus mouse macrophages. Proc. Natl Acad. Sci. USA 109, E944–E953 (2012).

    CAS 
    Article 

    Google Scholar 

  • 31.

    Thomas, A. C. & Mattila, J. T. “Of mice and men”: arginine metabolism in macrophages. Front. Immunol. 5, 479 (2014).

    Article 
    CAS 

    Google Scholar 

  • 32.

    Settembre, C. et al. TFEB links autophagy to lysosomal biogenesis. Science 332, 1429–1433 (2011).

    CAS 
    Article 

    Google Scholar 

  • 33.

    Sardiello, M. et al. A gene network regulating lysosomal biogenesis and function. Science 325, 473–477 (2009).

    CAS 
    Article 

    Google Scholar 

  • 34.

    Napolitano, G. & Ballabio, A. TFEB at a glance. J. Cell Sci. 129, 2475–2481 (2016).

    CAS 

    Google Scholar 

  • 35.

    Delamarre, L., Pack, M., Chang, H., Mellman, I. & Trombetta, E. S. Differential lysosomal proteolysis in antigen-presenting cells determines antigen fate. Science 307, 1630–1634 (2005).

    CAS 
    Article 

    Google Scholar 

  • 36.

    Trombetta, E. S. & Mellman, I. Cell biology of antigen processing in vitro and in vivo. Annu. Rev. Immunol. 23, 975–1028 (2005).

    CAS 
    Article 

    Google Scholar 

  • 37.

    Lund, A. W. et al. VEGF-C promotes immune tolerance in B16 melanomas and cross-presentation of tumor antigen by lymph node lymphatics. Cell Rep. 1, 191–199 (2012).

    CAS 
    Article 

    Google Scholar 

  • 38.

    Satpathy, A. T. et al. Zbtb46 expression distinguishes classical dendritic cells and their committed progenitors from other immune lineages. J. Exp. Med. 209, 1135–1152 (2012).

    CAS 
    Article 

    Google Scholar 

  • 39.

    Diment, S. Different roles for thiol and aspartyl proteases in antigen presentation of ovalbumin. J. Immunol. 145, 417–422 (1990).

    CAS 

    Google Scholar 

  • 40.

    Rodriguez, G. M. & Diment, S. Destructive proteolysis by cysteine proteases in antigen presentation of ovalbumin. Eur. J. Immunol. 25, 1823–1827 (1995).

    CAS 
    Article 

    Google Scholar 

  • 41.

    Matsumoto, K. et al. Structural basis of inhibition of cysteine proteases by E-64 and its derivatives. Biopolymers 51, 99–107 (1999).

    CAS 
    Article 

    Google Scholar 

  • 42.

    Powers, J. C., Asgian, J. L., Ekici, Ö. D. & James, K. E. Irreversible inhibitors of serine, cysteine, and threonine proteases. Chem. Rev. 102, 4639–4750 (2002).

    CAS 
    Article 

    Google Scholar 

  • 43.

    Chakraborty, K. et al. Tissue specific targeting of DNA nanodevices in a multicellular living organism. Elife 10, e67830 (2021).

    Article 

    Google Scholar 

  • 44.

    Burdette, D. L. & Vance, R. E. STING and the innate immune response to nucleic acids in the cytosol. Nat. Immunol. 14, 19–26 (2013).

    CAS 
    Article 

    Google Scholar 

  • 45.

    Canton, J., Neculai, D. & Grinstein, S. Scavenger receptors in homeostasis and immunity. Nat. Rev. Immunol. 13, 621–634 (2013).

    CAS 
    Article 

    Google Scholar 

  • 46.

    Olson, O. C. & Joyce, J. A. Cysteine cathepsin proteases: regulators of cancer progression and therapeutic response. Nat. Rev. Cancer 15, 712–729 (2015).

    CAS 
    Article 

    Google Scholar 

  • 47.

    Gocheva, V. et al. IL-4 induces cathepsin protease activity in tumor-associated macrophages to promote cancer growth and invasion. Genes Dev. 24, 241–255 (2010).

    CAS 
    Article 

    Google Scholar 

  • 48.

    Gopinathan, A. et al. Cathepsin B promotes the progression of pancreatic ductal adenocarcinoma in mice. Gut 61, 877–884 (2012).

    CAS 
    Article 

    Google Scholar 

  • 49.

    Kerbel, R. S. & Kamen, B. A. The anti-angiogenic basis of metronomic chemotherapy. Nat. Rev. Cancer 4, 423–436 (2004).

    CAS 
    Article 

    Google Scholar 

  • 50.

    Sistigu, A. et al. Immunomodulatory effects of cyclophosphamide and implementations for vaccine design. Semin. Immunopathol. 33, 369–383 (2011).

    CAS 
    Article 

    Google Scholar 

  • 51.

    Murray, P. J. Macrophage polarization. Annu. Rev. Physiol. 79, 541–566 (2017).

    CAS 
    Article 

    Google Scholar 

  • 52.

    Pastor, F., Kolonias, D., McNamara, J. O. & Gilboa, E. Targeting 4-1BB costimulation to disseminated tumor lesions with bi-specific oligonucleotide aptamers. Mol. Ther. 19, 1878–1886 (2011).

    CAS 
    Article 

    Google Scholar 

  • 53.

    Siegers, G. M. et al. Anti-leukemia activity of in vitro-expanded human gamma delta T cells in a xenogeneic Ph+ leukemia model. PLoS ONE 6, e16700 (2011).

    CAS 
    Article 

    Google Scholar 

  • 54.

    Cho, Y., Lee, J. B. & Hong, J. Controlled release of an anti-cancer drug from DNA structured nano-films. Sci. Rep. 4, 4078 (2014).

    Article 
    CAS 

    Google Scholar 

  • 55.

    Lee, H. et al. Molecularly self-assembled nucleic acid nanoparticles for targeted in vivo siRNA delivery. Nat. Nanotechnol. 7, 389–393 (2012).

    CAS 
    Article 

    Google Scholar 

  • 56.

    Li, S. et al. A DNA nanorobot functions as a cancer therapeutic in response to a molecular trigger in vivo. Nat. Biotechnol. 36, 258–264 (2018).

    CAS 
    Article 

    Google Scholar 

  • 57.

    Li, Z., He, X., Luo, X., Wang, L. & Ma, N. DNA-programmed quantum dot polymerization for ultrasensitive molecular imaging of cancer cells. Anal. Chem. 88, 9355–9358 (2016).

    CAS 
    Article 

    Google Scholar 

  • 58.

    Zhang, P. et al. Near infrared-guided smart nanocarriers for microRNA-controlled release of doxorubicin/siRNA with intracellular ATP as fuel. ACS Nano 10, 3637–3647 (2016).

    CAS 
    Article 

    Google Scholar 

  • 59.

    Gustafson, H. H., Holt-Casper, D., Grainger, D. W. & Ghandehari, H. Nanoparticle uptake: the phagocyte problem. Nano Today 10, 487–510 (2015).

    CAS 
    Article 

    Google Scholar 

  • 60.

    Kelly, C., Jefferies, C. & Cryan, S.-A. Targeted liposomal drug delivery to monocytes and macrophages. J. Drug Deliv. 2011, 727241 (2011).

    Article 
    CAS 

    Google Scholar 

  • 61.

    Kratz, M. et al. Metabolic dysfunction drives a mechanistically distinct proinflammatory phenotype in adipose tissue macrophages. Cell Metab. 20, 614–625 (2014).

    CAS 
    Article 

    Google Scholar 

  • 62.

    Cassetta, L. et al. Human tumor-associated macrophage and monocyte transcriptional landscapes reveal cancer-specific reprogramming, biomarkers, and therapeutic targets. Cancer Cell 35, 588–602 (2019).

    CAS 
    Article 

    Google Scholar 

  • 63.

    Reardon, C. A. et al. Obesity and insulin resistance promote atherosclerosis through an IFNγ-regulated macrophage protein network. Cell Rep. 23, 3021–3030 (2018).

    CAS 
    Article 

    Google Scholar 

  • 64.

    Eng, J. K. et al. A deeper look into Comet—implementation and features. J. Am. Soc. Mass. Spectrom. 26, 1865–1874 (2015).

    CAS 
    Article 

    Google Scholar 

  • 65.

    Becker, L. et al. A macrophage sterol-responsive network linked to atherogenesis. Cell Metab. 11, 125–135 (2010).

    CAS 
    Article 

    Google Scholar 

  • 66.

    Heinecke, N. L., Pratt, B. S., Vaisar, T. & Becker, L. PepC: proteomics software for identifying differentially expressed proteins based on spectral counting. Bioinformatics 26, 1574–1575 (2010).

    CAS 
    Article 

    Google Scholar 

  • Source link