Preloader

A Lab-in-a-Fiber optofluidic device using droplet microfluidics and laser-induced fluorescence for virus detection

  • Yew, M., Ren, Y., Koh, K. S., Sun, C. & Snape, C. A review of state-of-the-art microfluidic technologies for environmental applications: Detection and remediation. Global Chall. 3, 1800060. https://doi.org/10.1002/gch2.201800060 (2019).

    Article 

    Google Scholar 

  • Dittrich, P. S. & Manz, A. Lab-on-a-Chip: Microfluidics in drug discovery. Nat. Rev. Drug Discov. 5, 210–218 (2006).

    CAS 
    Article 

    Google Scholar 

  • Wu, M.-H., Huang, S.-B. & Lee, G.-B. Microfluidic cell culture systems for drug research. Lab Chip 10, 939 (2010).

    CAS 
    Article 

    Google Scholar 

  • Whitesides, G. M. The origins and the future of microfluidics. Nature 442, 368–373 (2006).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Cui, X. et al. Smartphone-based rapid quantification of viable bacteria by single-cell microdroplet turbidity imaging. Analyst 143, 3309–3316. https://doi.org/10.1039/C8AN00456K (2018).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Evanko, D. Living droplets. Nat. Methods 5, 580 (2008).

    CAS 
    Article 

    Google Scholar 

  • Li, H. et al. Application of droplet digital PCR to detect the pathogens of infectious diseases. Biosci. Rep. 38, BSR20181170 (2018).

    Article 

    Google Scholar 

  • Barea, J. S., Lee, J. & Kang, D.-K. Recent advances in droplet-based microfluidic technologies for biochemistry and molecular biology. Micromachines 10, 412. https://doi.org/10.3390/mi10060412 (2019).

    Article 

    Google Scholar 

  • Ngernsutivorakul, T., Steyer, D. J., Valenta, A. C. & Kennedy, R. T. In vivo chemical monitoring at high spatiotemporal resolution using microfabricated sampling probes and droplet-based microfluidics coupled to mass spectrometry. Anal. Chem. 90, 10943–10950. https://doi.org/10.1021/acs.analchem.8b02468 (2018).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Slaney, T. R. et al. Push–pull perfusion sampling with segmented flow for high temporal and spatial resolution in vivo chemical monitoring. Anal. Chem. 83, 5207–5213. https://doi.org/10.1021/ac2003938 (2011).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, M., Roman, G. T., Schultz, K., Jennings, C. & Kennedy, R. T. Improved temporal resolution for in vivo microdialysis by using segmented flow. Anal. Chem. 80, 5607–5615. https://doi.org/10.1021/ac800622s (2008).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hindson, B. J. et al. High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Anal. Chem. 83, 8604–8610. https://doi.org/10.1021/ac202028g (2011).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schuler, F. et al. Digital droplet lamp as a microfluidic app on standard laboratory devices. Anal. Methods 8, 2750–2755. https://doi.org/10.1039/C6AY00600K (2016).

    CAS 
    Article 

    Google Scholar 

  • Monat, C., Domachuk, P. & Eggleton, B. J. Integrated optofluidics: A new river of light. Nat. Photonics 1, 106–114. https://doi.org/10.1038/nphoton.2006.96 (2007).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Vallejo, D., Nikoomanzar, A., Paegel, B. M. & Chaput, J. C. Fluorescence-activated droplet sorting for single-cell directed evolution. ACS Synth. Biol. 8, 1430–1440. https://doi.org/10.1021/acssynbio.9b00103 (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vallejo, D., Nikoomanzar, A. & Chaput, J. C. Directed evolution of custom polymerases using droplet microfluidics. In Methods in Enzymology (eds Colowick, S. P. et al.) 227–253 (Elsevier, 2020). https://doi.org/10.1016/bs.mie.2020.04.056.

    Chapter 

    Google Scholar 

  • Tu, R. et al. Droplet-based microfluidic platform for high-throughput screening of streptomyces. Commun. Biol. 4, 1–9. https://doi.org/10.1038/s42003-021-02186-y (2021).

    CAS 
    Article 

    Google Scholar 

  • Paiè, P., Vázquez, R. M., Osellame, R., Bragheri, F. & Bassi, A. Microfluidic based optical microscopes on chip. Cytom. Part A 93, 987–996. https://doi.org/10.1002/cyto.a.23589 (2018).

    Article 

    Google Scholar 

  • Fu, J.-L., Fang, Q., Zhang, T., Jin, X.-H. & Fang, Z.-L. Laser-induced fluorescence detection system for microfluidic chips based on an orthogonal optical arrangement. Anal. Chem. 78, 3827–3834. https://doi.org/10.1021/ac060153q (2006).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Zhang, P., Kaushik, A., Hsieh, K. & Wang, T.-H. Customizing droplet contents and dynamic ranges via integrated programmable picodroplet assembler. Microsyst. Nanoeng. 5, 1–12. https://doi.org/10.1038/s41378-019-0062-5 (2019).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fu, X., Zhang, Y., Xu, Q., Sun, X. & Meng, F. Recent advances on sorting methods of high-throughput droplet-based microfluidics in enzyme directed evolution. Front. Chem. 9, 666867. https://doi.org/10.3389/fchem.2021.666867 (2021).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Booth, M. A. et al. Fiber-based electrochemical biosensors for monitoring pH and transient neurometabolic lactate. Anal. Chem. 93, 6646–6655. https://doi.org/10.1021/acs.analchem.0c05108 (2021).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Frank, J. A. et al. In vivo photopharmacology enabled by multifunctional fibers. ACS Chem. Neurosci. 11, 3802–3813. https://doi.org/10.1021/acschemneuro.0c00577 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Yankelevich, D. R. et al. Design and evaluation of a device for fast multispectral time-resolved fluorescence spectroscopy and imaging. Rev. Sci. Instrum. 85, 034303. https://doi.org/10.1063/1.4869037 (2014).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Marsden, M. et al. FLImBrush: Dynamic visualization of intraoperative free-hand fiber-based fluorescence lifetime imaging. Biomed. Opt. Express 11, 5166. https://doi.org/10.1364/boe.398357 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Thiberville, L. et al. Human in vivo fluorescence microimaging of the alveolar ducts and sacs during bronchoscopy. Eur. Respir. J. 33, 974–985. https://doi.org/10.1183/09031936.00083708 (2009).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Mills, B. et al. Molecular detection of gram-positive bacteria in the human lung through an optical fiber-based endoscope. Eur. J. Nucl. Med. Mol. Imaging 48, 800–807. https://doi.org/10.1007/s00259-020-05021-4 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Etcheverry, S., Russom, A., Laurell, F. & Margulis, W. Fluidic trapping and optical detection of microparticles with a functional optical fiber. Opt. Express 25, 33657. https://doi.org/10.1364/oe.25.033657 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Sudirman, A., Etcheverry, S., Stjernström, M., Laurell, F. & Margulis, W. A fiber optic system for detection and collection of micrometer-size particles. Opt. Express 22, 21480. https://doi.org/10.1364/oe.22.021480 (2014).

    ADS 
    Article 
    PubMed 

    Google Scholar 

  • Etcheverry, S. et al. High performance micro-flow cytometer based on optical fibres. Sci. Rep. 7, 1–8. https://doi.org/10.1038/s41598-017-05843-7 (2017).

    CAS 
    Article 

    Google Scholar 

  • Kumar, T. et al. Optofluidic fiber component for separation and counting of micron-sized particles. bioRxiv. https://doi.org/10.1101/2021.04.13.439593 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yan, D., Popp, J., Pletz, M. W. & Frosch, T. Highly sensitive broadband Raman sensing of antibiotics in step-index hollow-core photonic crystal fibers. ACS Photonics 4, 138–145. https://doi.org/10.1021/acsphotonics.6b00688 (2017).

    CAS 
    Article 

    Google Scholar 

  • Förster, R. et al. Tracking and analyzing the Brownian motion of nano-objects inside hollow core fibers. ACS Sens. 5, 879–886. https://doi.org/10.1021/acssensors.0c00339 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Jiang, S. et al. Three-dimensional spatiotemporal tracking of nano-objects diffusing in water-filled optofluidic microstructured fiber. Nanophotonics 9, 4545–4554. https://doi.org/10.1515/nanoph-2020-0330 (2020).

    CAS 
    Article 

    Google Scholar 

  • Schmidt, M. A. et al. Optofluidic fiber-based nanoparticle tracking analysis: Tool to characterize diffusing nanoscale specimen such as SARS-CoV-2. In Micro-structured and Specialty Optical Fibres VII (eds Peterka, P., Kalli, K. & Mendez, A.) (SPIE, 2021). https://doi.org/10.1117/12.2597806.

  • Kim, J. et al. The optofluidic light cage—On-chip integrated spectroscopy using an antiresonance hollow core waveguide. Anal. Chem. 93, 752–760. https://doi.org/10.1021/acs.analchem.0c02857 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • MacKay, M. J. et al. The Covid-19 xprize and the need for scalable, fast, and widespread testing. Nat. Biotechnol. 38, 1021–1024. https://doi.org/10.1038/s41587-020-0655-4 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dinnes, J. et al. Rapid, point-of-care antigen and molecular-based tests for diagnosis of SARS-CoV-2 infection. Cochrane Database Syst. Rev. https://doi.org/10.1002/14651858.cd013705 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ibrahim, A. M., Padovani, J. I., Howe, R. T. & Anis, Y. H. Modeling of droplet generation in a microfluidic flow-focusing junction for droplet size control. Micromachines 12, 590 (2021).

    Article 

    Google Scholar 

  • Zhu, P. & Wang, L. Passive and active droplet generation with microfluidics: A review. Lab Chip 17, 34–75. https://doi.org/10.1039/c6lc01018k (2017).

    CAS 
    Article 

    Google Scholar 

  • Virtanen, P. et al. SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).

    CAS 
    Article 

    Google Scholar 

  • Harris, C. R. et al. Array programming with NumPy. Nature 585, 357–362 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Soares, R. R. G. et al. Sample-to-answer COVID-19 nucleic acid testing using a low-cost centrifugal microfluidic platform with bead-based signal enhancement and smartphone read-out. Lab Chip. https://doi.org/10.1039/d1lc00266j (2021).

    Article 
    PubMed 

    Google Scholar 

  • Yu, L. et al. Rapid detection of COVID-19 coronavirus using a reverse transcriptional loop-mediated isothermal amplification (RT-LAMP) diagnostic platform. Clin. Chem. 66, 975–977. https://doi.org/10.1093/clinchem/hvaa102 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Vazquez, B., Qureshi, N., Oropeza-Ramos, L. & Olguin, L. F. Effect of velocity on microdroplet fluorescence quantified by laser-induced fluorescence. Lab Chip 14, 3550–3555. https://doi.org/10.1039/c4lc00654b (2014).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Stone, J. M., Wood, H. A. C., Harrington, K. & Birks, T. A. Low index contrast imaging fibers. Opt. Lett. 42, 1484–1487 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Parker, H. E., Perperidis, A., Stone, J. M., Dhaliwal, K. & Tanner, M. G. Core crosstalk in ordered imaging fiber bundles. Opt. Lett. 45, 6490. https://doi.org/10.1364/OL.405764 (2020).

    ADS 
    Article 
    PubMed 

    Google Scholar 

  • Source link