Preloader

A 68-codon genetic code to incorporate four distinct non-canonical amino acids enabled by automated orthogonal mRNA design

  • 1.

    Chin, J. W. Expanding and reprogramming the genetic code. Nature 550, 53–60 (2017).

    CAS 
    Article 

    Google Scholar 

  • 2.

    de la Torre, D. & Chin, J. W. Reprogramming the genetic code. Nat. Rev. Genet. 22, 169–184 (2021).

    CAS 
    Article 

    Google Scholar 

  • 3.

    Robertson, W. E. et al. Sense codon reassignment enables viral resistance and encoded polymer synthesis. Science 372, 1057–1062 (2021).

    CAS 
    Article 

    Google Scholar 

  • 4.

    Neumann, H., Wang, K., Davis, L., Garcia-Alai, M. & Chin, J. W. Encoding multiple unnatural amino acids via evolution of a quadruplet-decoding ribosome. Nature 464, 441–444 (2010).

    CAS 
    Article 

    Google Scholar 

  • 5.

    Wang, K. et al. Optimized orthogonal translation of unnatural amino acids enables spontaneous protein double-labelling and FRET. Nat. Chem. 6, 393–403 (2014).

    CAS 
    Article 

    Google Scholar 

  • 6.

    Anderson, J. C. et al. An expanded genetic code with a functional quadruplet codon. Proc. Natl Acad. Sci. USA 101, 7566–7571 (2004).

    CAS 
    Article 

    Google Scholar 

  • 7.

    Fredens, J. et al. Total synthesis of Escherichia coli with a recoded genome. Nature 569, 514–518 (2019).

    CAS 
    Article 

    Google Scholar 

  • 8.

    Wang, K. et al. Defining synonymous codon compression schemes by genome recoding. Nature 539, 59–64 (2016).

    CAS 
    Article 

    Google Scholar 

  • 9.

    Malyshev, D. A. et al. A semi-synthetic organism with an expanded genetic alphabet. Nature 509, 385–388 (2014).

    CAS 
    Article 

    Google Scholar 

  • 10.

    Zhang, Y. et al. A semi-synthetic organism that stores and retrieves increased genetic information. Nature 551, 644–647 (2017).

    CAS 
    Article 

    Google Scholar 

  • 11.

    Zhang, Y. et al. A semisynthetic organism engineered for the stable expansion of the genetic alphabet. Proc. Natl Acad. Sci. USA 114, 1317–1322 (2017).

    CAS 
    Article 

    Google Scholar 

  • 12.

    Fischer, E. C. et al. New codons for efficient production of unnatural proteins in a semisynthetic organism. Nat. Chem. Biol. 16, 570–576 (2020).

    CAS 
    Article 

    Google Scholar 

  • 13.

    Neumann, H., Slusarczyk, A. L. & Chin, J. W. De novo generation of mutually orthogonal aminoacyl-tRNA synthetase/tRNA pairs. J. Am. Chem. Soc. 132, 2142–2144 (2010).

    CAS 
    Article 

    Google Scholar 

  • 14.

    Chatterjee, A., Sun, S. B., Furman, J. L., Xiao, H. & Schultz, P. G. A versatile platform for single- and multiple-unnatural amino acid mutagenesis in Escherichia coli. Biochemistry 52, 1828–1837 (2013).

    CAS 
    Article 

    Google Scholar 

  • 15.

    Willis, J. C. W. & Chin, J. W. Mutually orthogonal pyrrolysyl-tRNA synthetase/tRNA pairs. Nat. Chem. 10, 831–837 (2018).

    CAS 
    Article 

    Google Scholar 

  • 16.

    Dunkelmann, D. L., Willis, J. C. W., Beattie, A. T. & Chin, J. W. Engineered triply orthogonal pyrrolysyl–tRNA synthetase/tRNA pairs enable the genetic encoding of three distinct non-canonical amino acids. Nat. Chem. 12, 535–544 (2020).

    CAS 
    Article 

    Google Scholar 

  • 17.

    Cervettini, D. et al. Rapid discovery and evolution of orthogonal aminoacyl-tRNA synthetase–tRNA pairs. Nat. Biotechnol. 38, 989–999 (2020).

    CAS 
    Article 

    Google Scholar 

  • 18.

    Zhang, M. S. et al. Biosynthesis and genetic encoding of phosphothreonine through parallel selection and deep sequencing. Nat. Methods 14, 729–736 (2017).

    CAS 
    Article 

    Google Scholar 

  • 19.

    Italia, J. et al. Mutually orthogonal nonsense-suppression systems and conjugation chemistries for precise protein labeling at up to three distinct sites. J. Am. Chem. Soc. 141, 6204–6212 (2019).

    CAS 
    Article 

    Google Scholar 

  • 20.

    Rackham, O. & Chin, J. W. A network of orthogonal ribosome·mRNA pairs. Nat. Chem. Biol. 1, 159–166 (2005).

    CAS 
    Article 

    Google Scholar 

  • 21.

    Wang, K., Neumann, H., Peak-Chew, S. Y. & Chin, J. W. Evolved orthogonal ribosomes enhance the efficiency of synthetic genetic code expansion. Nat. Biotechnol. 25, 770–777 (2007).

    Article 

    Google Scholar 

  • 22.

    Schmied, W. H. et al. Controlling orthogonal ribosome subunit interactions enables evolution of new function. Nature 564, 444–448 (2018).

    CAS 
    Article 

    Google Scholar 

  • 23.

    Venkat, S. et al. Genetically incorporating two distinct post-translational modifications into one protein simultaneously. ACS Synth. Biol. 7, 689–695 (2018).

    CAS 
    Article 

    Google Scholar 

  • 24.

    Chin, J. W. Expanding and reprogramming the genetic code of cells and animals. Annu. Rev. Biochem. 83, 379–408 (2014).

    CAS 
    Article 

    Google Scholar 

  • 25.

    Cambray, G., Guimaraes, J. C. & Arkin, A. P. Evaluation of 244,000 synthetic sequences reveals design principles to optimize translation in Escherichia coli. Nat. Biotechnol. 36, 1005–1015 (2018).

    CAS 
    Article 

    Google Scholar 

  • 26.

    Plotkin, J. B. & Kudla, G. Synonymous but not the same: the causes and consequences of codon bias. Nat. Rev. Genet. 12, 32–42 (2011).

    CAS 
    Article 

    Google Scholar 

  • 27.

    Tuller, T. & Zur, H. Multiple roles of the coding sequence 5′ end in gene expression regulation. Nucleic Acids Res. 43, 13–28 (2015).

    CAS 
    Article 

    Google Scholar 

  • 28.

    Salis, H. M., Mirsky, E. A. & Voigt, C. A. Automated design of synthetic ribosome binding sites to control protein expression. Nat. Biotechnol. 27, 946–950 (2009).

    CAS 
    Article 

    Google Scholar 

  • 29.

    Na, D., Lee, S. & Lee, D. Mathematical modeling of translation initiation for the estimation of its efficiency to computationally design mRNA sequences with desired expression levels in prokaryotes. BMC Syst. Biol. 4, 1–16 (2010).

    Article 

    Google Scholar 

  • 30.

    Seo, S. W. et al. Predictive design of mRNA translation initiation region to control prokaryotic translation efficiency. Metab. Eng. 15, 67–74 (2013).

    CAS 
    Article 

    Google Scholar 

  • 31.

    Salis, H. M. in Methods in Enzymology, Vol. 498 (ed. Hershlag, D.) 19–42 (Academic Press, 2011).

  • 32.

    Espah Borujeni, A., Channarasappa, A. S. & Salis, H. M. Translation rate is controlled by coupled trade-offs between site accessibility, selective RNA unfolding and sliding at upstream standby sites. Nucleic Acids Res. 42, 2646–2659 (2014).

    CAS 
    Article 

    Google Scholar 

  • 33.

    Espah Borujeni, A. & Salis, H. M. Translation initiation is controlled by RNA folding kinetics via a ribosome drafting mechanism. J. Am. Chem. Soc. 138, 7016–7023 (2016).

    CAS 
    Article 

    Google Scholar 

  • 34.

    Espah Borujeni, A. et al. Precise quantification of translation inhibition by mRNA structures that overlap with the ribosomal footprint in N-terminal coding sequences. Nucleic Acids Res. 45, 5437–5448 (2017).

    Article 

    Google Scholar 

  • 35.

    Kudla, G., Murray, A. W., Tollervey, D. & Plotkin, J. B. Coding-sequence determinants of gene expression in escherichia coli. Science 324, 255–258 (2009).

    CAS 
    Article 

    Google Scholar 

  • 36.

    Allert, M., Cox, J. C. & Hellinga, H. W. Multifactorial determinants of protein expression in prokaryotic open reading frames. J. Mol. Biol. 402, 905–918 (2010).

    CAS 
    Article 

    Google Scholar 

  • 37.

    Goodman, D. B., Church, G. M. & Kosuri, S. Causes and effects of N-terminal codon bias in bacterial genes. Science 342, 475–479 (2013).

    CAS 
    Article 

    Google Scholar 

  • 38.

    Phizicky, E. M. & Hopper, A. K. tRNA biology charges to the front. Genes Dev. 24, 1832–1860 (2010).

    Article 

    Google Scholar 

  • 39.

    El Yacoubi, B., Bailly, M. & de Crécy-Lagard, V. Biosynthesis and function of posttranscriptional modifications of transfer RNAs. Annu. Rev. Genet. 46, 69–95 (2012).

    CAS 
    Article 

    Google Scholar 

  • 40.

    An, W. & Chin, J. W. Synthesis of orthogonal transcription–translation networks. Proc. Natl Acad. Sci. USA 106, 8477–8482 (2009).

    CAS 
    Article 

    Google Scholar 

  • 41.

    Darlington, A. P. S., Kim, J., Jiménez, J. I. & Bates, D. G. Dynamic allocation of orthogonal ribosomes facilitates uncoupling of co-expressed genes. Nat. Commun. 9, 1–12 (2018).

    CAS 
    Article 

    Google Scholar 

  • Source link