Preloader

Agr Quorum Sensing influences the Wood-Ljungdahl pathway in Clostridium autoethanogenum

  • 1.

    Whitehead, N. A., Barnard, A. M., Slater, H., Simpson, N. J. & Salmond, G. P. Quorum-sensing in Gram-negative bacteria. FEMS Microbiol. Rev. 25, 365–404 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • 2.

    Miller, M. B. & Bassler, B. L. Quorum sensing in bacteria. Annu. Rev. Microbiol. 55, 165–199 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • 3.

    Williams, P., Winzer, K., Chan, W. C. & Cámara, M. Look who’s talking: Communication and quorum sensing in the bacterial world. Philos. Trans. R. Soc. Lond. B 362, 1119–1134 (2007).

    CAS 

    Google Scholar 

  • 4.

    Mukherjee, S. & Bassler, B. L. Bacterial quorum sensing in complex and dynamically changing environments. Nat. Rev. Microbiol. 17, 371–382 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 5.

    Bassler, B. L. How bacteria talk to each other: Regulation of gene expression by quorum sensing. Curr. Opin. Microbiol. 2, 582–587 (1999).

    CAS 
    PubMed 

    Google Scholar 

  • 6.

    Waters, C. M. & Bassler, B. L. The Vibrio harveyi quorum-sensing system uses shared regulatory components to discriminate between multiple autoinducers. Genes Dev. 20, 2754–2767 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 7.

    Waters, C. M. & Bassler, B. L. Quorum sensing: Cell-to-cell communication in bacteria. Annu. Rev. Cell Dev. Biol. 21, 319–346 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • 8.

    Chen, Y. et al. The SCIFF-derived ranthipeptides participate in quorum sensing in solventogenic clostridia. Biotechnol. J. 15, 1–8 (2020).

    Google Scholar 

  • 9.

    Feng, J. et al. RRNPP-Type quorum-sensing systems regulate solvent formation, sporulation and cell motility in Clostridium saccharoperbutylacetonicum. Biotechnol. Biofuels 13, 1–16 (2020).

    Google Scholar 

  • 10.

    Kotte, A.-K. et al. RRNPP-type quorum sensing affects solvent formation and sporulation in Clostridium acetobutylicum. Microbiology 166, 579–592 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 11.

    Steiner, E., Scott, J., Minton, N. P. & Winzer, K. An agr quorum sensing system that regulates granulose formation and sporulation in Clostridium acetobutylicum. Appl. Environ. Microbiol. 78, 1113–1122 (2012).

    CAS 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 12.

    Steiner, E. et al. Multiple orphan histidine kinases interact directly with Spo0A to control the initiation of endospore formation in Clostridium acetobutylicum. Mol. Microbiol. 80, 641–654 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 13.

    Köpke, M. et al. Clostridium ljungdahlii represents a microbial production platform based on syngas. Proc. Natl. Acad. Sci. U. S. A. 107, 13087–13092 (2010).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 14.

    Bengelsdorf, F. R. et al. Industrial acetogenic biocatalysts: A comparative metabolic and genomic analysis. Front. Microbiol. 7, 1–15 (2016).

    Google Scholar 

  • 15.

    Jeong, Y., Song, Y., Shin, H. S. & Cho, B.-K. Draft genome sequence of acid-tolerant Clostridium drakei SL1 T, a potential chemical producer through syngas fermentation. Genome Announc. 2, 4–5 (2014).

    Google Scholar 

  • 16.

    Huhnke, R. L., Lewis, R. S. & Tanner, R. S. Isolation and Characterization of novel Clostridial Species. Patent 38 (2008).

  • 17.

    Abubackar, H. N., Veiga, M. C. & Kennes, C. Syngas fermentation for bioethanol and bioproducts. In Sustainable Resource Recovery and Zero Waste Approaches 207–221 (Elsevier, 2019).

    Google Scholar 

  • 18.

    Köpke, M. & Simpson, S. D. Pollution to products: Recycling of ‘above ground’ carbon by gas fermentation. Curr. Opin. Biotechnol. 65, 180–189 (2020).

    PubMed 

    Google Scholar 

  • 19.

    Dürre, P. Gas fermentation: A biotechnological solution for today’s challenges. Microb. Biotechnol. 10, 14–16 (2017).

    PubMed 

    Google Scholar 

  • 20.

    Liew, F. et al. Gas fermentation: A flexible platform for commercial scale production of low-carbon-fuels and chemicals from waste and renewable feedstocks. Front. Microbiol. 7, 694 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 21.

    Jin, S. et al. Synthetic biology on acetogenic bacteria for highly efficient conversion of c1 gases to biochemicals. Int. J. Mol. Sci. 21, 1–25 (2020).

    Google Scholar 

  • 22.

    Abrini, J., Naveau, H. & Nyns, E. Clostridium autoethanogenum, sp. nov., an anaerobic bacterium that produces ethanol from carbon monoxide. Arch. Microbiol. 161, 345–351 (1994).

    CAS 

    Google Scholar 

  • 23.

    Drake, H. L., Küsel, K. & Matthies, C. Acetogenic prokaryotes. The Prokaryotes 2, 354–420 (2006).

    Google Scholar 

  • 24.

    Ragsdale, S. W. & Pierce, E. Acetogenesis and the Wood-Ljungdahl pathway of CO2 fixation. Biochim. Biophys. Acta 1784, 1873–1898 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 25.

    Biegel, E., Schmidt, S., González, J. M. & Müller, V. Biochemistry, evolution and physiological function of the Rnf complex, a novel ion-motive electron transport complex in prokaryotes. Cell. Mol. Life Sci. 68, 613–634 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • 26.

    Tremblay, P., Zhang, T., Dar, S. A., Leang, C. & Lovley, D. R. The Rnf complex of Clostridium ljungdahlii is a proton-translocating Ferredoxin:NAD + oxidoreductase essential for autotrophic growth. MBio 4, 1–8 (2013).

    Google Scholar 

  • 27.

    Müller, V. New horizons in acetogenic conversion of one-carbon substrates and biological hydrogen storage. Trends Biotechnol. 37, 1344–1354 (2019).

    PubMed 

    Google Scholar 

  • 28.

    Müller, V. Energy conservation in acetogenic bacteria. Appl. Environ. Microbiol. 69, 6345–6353 (2003).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 29.

    Wood, H. G. A study of carbon dioxide fixation by mass determination of the types of C13-acetate. J. Biol. Chem. 194, 905–931 (1952).

    CAS 
    PubMed 

    Google Scholar 

  • 30.

    Ivey, D. M. & Ljungdahl, L. G. Purification and characterization of the F1-ATPase from Clostridium thermoaceticum. J. Bacteriol. 165, 252–257 (1986).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 31.

    Brown, S. D. et al. Comparison of single-molecule sequencing and hybrid approaches for finishing the genome of Clostridium autoethanogenum and analysis of CRISPR systems in industrial relevant Clostridia. Biotechnol. Biofuels 7, 40 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 32.

    Utturkar, S. M. et al. Sequence data for Clostridium autoethanogenum using three generations of sequencing technologies. Sci. Data 2, 150014 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 33.

    Köpke, M. et al. 2,3-Butanediol production by acetogenic bacteria, an alternative route to chemical synthesis, using industrial waste gas. Appl. Environ. Microbiol. 77, 5467–5475 (2011).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 34.

    Marcellin, E. et al. Low carbon fuels and commodity chemicals from waste gases: Systematic approach to understand energy metabolism in a model acetogen. Green Chem. 18, 3020–3028 (2016).

    CAS 

    Google Scholar 

  • 35.

    Mock, J. et al. Energy conservation associated with ethanol formation from H2 and CO2 in Clostridium autoethanogenum involving electron bifurcation. J. Bacteriol. 197, 2965–2980 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 36.

    Humphreys, C. M. et al. Whole genome sequence and manual annotation of Clostridium autoethanogenum, an industrially relevant bacterium. BMC Genom. 16, 1085 (2015).

    Google Scholar 

  • 37.

    Köpke, M. & Liew, F. Production of butanol from carbon monoxide by a recombinant microorganism (WO2012053905A1). Patent 133 (2012).

  • 38.

    Greene, J., Daniell, J., Köpke, M., Broadbelt, L. & Tyo, K. E. J. Kinetic ensemble model of gas fermenting Clostridium autoethanogenum for improved ethanol production. Biochem. Eng. J. 148, 46–56 (2019).

    CAS 

    Google Scholar 

  • 39.

    Norman, R. O. J. et al. Genome-scale model of C. autoethanogenum reveals optimal bioprocess conditions for high-value chemical production from carbon monoxide. Eng. Biol. 3, 32–40 (2019).

    Google Scholar 

  • 40.

    de Souza Pinto Lemgruber, R. et al. Systems-level engineering and characterisation of Clostridium autoethanogenum through heterologous production of poly-3-hydroxybutyrate (PHB). Metab. Eng. 53, 14–23 (2019).

    PubMed 

    Google Scholar 

  • 41.

    Fackler, N. et al. Transcriptional control of Clostridium autoethanogenum using CRISPRi. Synth. Biol. 6, ysaab008 (2021).

    Google Scholar 

  • 42.

    Schuchmann, K. & Müller, V. Energetics and application of heterotrophy in acetogenic bacteria. Appl. Environ. Microbiol. 82, 4056–4069 (2016).

    CAS 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 43.

    Valgepea, K. et al. H2 drives metabolic rearrangements in gas-fermenting Clostridium autoethanogenum. Biotechnol. Biofuels 11, 55 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 44.

    Liew, F. et al. Insights into CO 2 fixation pathway of Clostridium autoethanogenum by targeted mutagenesis. MBio 7, 1–10 (2016).

    Google Scholar 

  • 45.

    Mahamkali, V. et al. Redox controls metabolic robustness in the gas-fermenting acetogen Clostridium autoethanogenum. Proc. Natl. Acad. Sci. U. S. A. 117, 13168–13175 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 46.

    Aklujkar, M., Leang, C., Shrestha, P. M., Shrestha, M. & Lovley, D. R. Transcriptomic profiles of Clostridium ljungdahlii during lithotrophic growth with syngas or H2 and CO2 compared to organotrophic growth with fructose. Sci. Rep. 7, 1–14 (2017).

    CAS 

    Google Scholar 

  • 47.

    Ji, G., Beavis, R. C. & Novick, R. P. Cell density control of staphylococcal virulence mediated by an octapeptide pheromone. Proc. Natl. Acad. Sci. U. S. A. 92, 12055–12059 (1995).

    CAS 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 48.

    Ji, G., Beavis, R. & Novick, R. P. Bacterial interference caused by autoinducing peptide variants. Science 276, 2027–2030 (1997).

    CAS 
    PubMed 

    Google Scholar 

  • 49.

    Wuster, A. & Babu, M. M. Conservation and evolutionary dynamics of the agr cell-to-cell communication system across firmicutes. J. Bacteriol. 190, 743–746 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • 50.

    Vidal, J. E., Shak, J. R. & Canizalez-Roman, A. The CpAL quorum sensing system regulates production of hemolysins CPA and PFO to build Clostridium perfringens biofilms. Infect. Immun. 83, 2430–2442 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 51.

    Cooksley, C. M. et al. Regulation of neurotoxin production and sporulation by a putative agrBD signaling system in proteolytic Clostridium botulinum. Appl. Environ. Microbiol. 76, 4448–4460 (2010).

    CAS 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 52.

    Stabler, R. et al. Comparative genome and phenotypic analysis of Clostridium difficile 027 strains provides insight into the evolution of a hypervirulent bacterium. Genome Biol. 10, R102 (2009).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 53.

    Martin, M. J. et al. The agr locus regulates virulence and colonization genes in Clostridium difficile 027. J. Bacteriol. 195, 3672–3681 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 54.

    Li, J., Chen, J., Vidal, J. E. & McClane, B. A. The Agr-Like Quorum-sensing system regulates sporulation and production of enterotoxin and Beta2 toxin by Clostridium perfringens type A non-food-borne human gastrointestinal disease strain F5603. Infect. Immun. 79, 2451–2459 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 55.

    Zhang, L. & Ji, G. Identification of a staphylococcal AgrB1 segment(s) responsible for group-specific processing of AgrD by gene swapping. J. Bacteriol. 186, 6706–6713 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 56.

    Novick, R. P. Autoinduction and signal transduction in the regulation of staphylococcal virulence. Mol. Microbiol. 48, 1429–1449 (2003).

    CAS 
    PubMed 

    Google Scholar 

  • 57.

    Ng, Y. K. et al. Expanding the repertoire of gene tools for precise manipulation of the Clostridium difficile genome: Allelic exchange using pyrE alleles. PLoS ONE 8, e56051 (2013).

    CAS 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 58.

    Ehsaan, M. et al. Mutant generation by allelic exchange and genome resequencing of the biobutanol organism Clostridium acetobutylicum ATCC 824. Biotechnol. Biofuels 9, 4 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 59.

    Liew, F. et al. Metabolic engineering of Clostridium autoethanogenum for selective alcohol production. Metab. Eng. 40, 104–114 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 60.

    Annan, F. J. et al. Engineering of vitamin prototrophy in Clostridium ljungdahlii and Clostridium autoethanogenum. Appl. Microbiol. Biotechnol. 103, 4633–4648 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 61.

    Heap, J. T. et al. Integration of DNA into bacterial chromosomes from plasmids without a counter-selection marker. Nucleic Acids Res. 40, e59 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 62.

    Nguyen, T. K., Tran, N. P. & Cavin, J. F. Genetic and biochemical analysis of PadR-padC promoter interactions during the phenolic acid stress response in Bacillus subtilis 168. J. Bacteriol. 193, 4180–4191 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 63.

    Isom, C. E. et al. Crystal structure and DNA binding activity of a PadR family transcription regulator from hypervirulent Clostridium difficile R20291. BMC Microbiol. 16, 1–12 (2016).

    Google Scholar 

  • 64.

    Garsin, D. Ethanolamine utilisation in bacterial pathogens: Roles and regulation. Nat. Rev. Microbiol. 8, 290–295 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 65.

    Cornforth, D. M. et al. Combinatorial quorum sensing allows bacteria to resolve their social and physical environment. Proc. Natl. Acad. Sci. U. S. A. 111, 4280–4284 (2014).

    CAS 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 66.

    Dandekar, A. A., Chugani, S. & Greenberg, E. P. Bacterial quorum sensing and metabolic incentives to cooperate. Science 338, 264–266 (2012).

    CAS 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 67.

    Stouthamer, A. H. A theoretical study on the amount of ATP required for synthesis of microbial cell material. Antonie Van Leeuwenhoek 39, 545–565 (1973).

    CAS 
    PubMed 

    Google Scholar 

  • 68.

    Humphreys, C. M. et al. Whole genome sequence and manual annotation of Clostridium autoethanogenum, an industrially relevant bacterium. BMC Genom. 16, 1–10 (2015).

    Google Scholar 

  • 69.

    Xu, H. et al. Impact of exogenous acetate on ethanol formation and gene transcription for key enzymes in Clostridium autoethanogenum grown on CO. Biochem. Eng. J. 155, 107470 (2020).

    CAS 

    Google Scholar 

  • 70.

    Cannon, G. C. et al. Microcompartments in Prokaryotes: Carboxysomes and related polyhedra. Appl. Environ. Microbiol. 67, 5351–5361 (2001).

    CAS 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 71.

    Heldt, D. et al. Structure of a trimeric bacterial microcompartment shell protein, EtuB, associated with ethanol utilization in Clostridium kluyveri. Biochem. J. 423, 199–207 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • 72.

    Schuchmann, K. et al. Nonacetogenic growth of the acetogen Acetobacterium woodii on 1,2-propanediol. J. Bacteriol. 197, 382–391 (2015).

    PubMed 

    Google Scholar 

  • 73.

    Ow, S. Y. et al. iTRAQ underestimation in simple and complex mixtures: ‘The good, the bad and the ugly’. J. Proteome Res. 8, 5347–5355 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • 74.

    Perkel, J. M. iTRAQ gets put to the test. J. Proteome Res. 8, 4885–4885 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • 75.

    Verbeke, T. J. et al. Pentose sugars inhibit metabolism and increase expression of an AgrD-type cyclic pentapeptide in Clostridium thermocellum. Sci. Rep. 7, 43355 (2017).

    CAS 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 76.

    Cornforth, D. M. & Foster, K. R. Competition sensing: The social side of bacterial stress responses. Nat. Rev. Microbiol. 11, 285–293 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 77.

    Lee, J. et al. A cell-cell communication signal integrates quorum sensing and stress response. Nat. Chem. Biol. 9, 339–343 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 78.

    Heap, J. T., Pennington, O. J., Cartman, S. T. & Minton, N. P. A modular system for Clostridium shuttle plasmids. J. Microbiol. Methods 78, 79–85 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • 79.

    Minton, N. P. et al. A roadmap for gene system development in Clostridium. Anaerobe 41, 104–112 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 80.

    Purdy, D. et al. Conjugative transfer of clostridial shuttle vectors from Escherichia coli to Clostridium difficile through circumvention of the restriction barrier. Mol. Microbiol. 46, 439–452 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • 81.

    Wang, S. et al. NADP-specific electron-bifurcating [FeFe]-hydrogenase in a functional complex with formate dehydrogenase in Clostridium autoethanogenum grown on CO. J. Bacteriol. 195, 4373–4386 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Source link