Singhal, T. et al. Genotype x environment interaction and genetic association of grain iron and zinc content with other agronomic traits in RIL population of pearl millet. Crop Pasture Sci. 69, 1092–1102 (2018).
Google Scholar
Anuradha, N. et al. Evaluation of pearl millet [Pennisetum glaucum (L.) R. Br.] for grain iron and zinc content in different agro climatic zones of India. Indian J. Genet. Plant Breed. 77(1), 65–73 (2017).
Google Scholar
Saleh, A. S. M., Zhang, Q., Chen, J. & Shen, Q. Millet grains: Nutritional quality, processing, and potential health benefits. Compr. Rev. Food Sci. Food Saf. 12, 281–295. https://doi.org/10.1111/1541-4337.12012 (2013).
Google Scholar
Parthasarathy, R. P., Birthal, P. S., Reddy, B. V. S., Rai, K. N. & Ramesh, S. Diagnostics of sorghum and pearl millet grains-based nutrition in India. Int. Sorghum Millets Newsl. 44, 93–96 (2006).
Krishnan, R. & Meera, M. S. Pearl millet minerals: effect of processing on bioaccessibility. J. Food Sci. Technol. 55, 3362–3372. https://doi.org/10.1007/s13197-018-3305-9 (2018).
Google Scholar
Welch, R. M. & Graham, R. D. Breeding for micronutrients in staple food crops from a human nutrition perspective. J. Exp. Bot. 55, 353–364. https://doi.org/10.1093/jxb/erh064 (2004).
Google Scholar
Bailey, R. L., West, K. P. Jr. & Black, R. E. The epidemiology of global micronutrient deficiencies. Ann. Nutr. Metab. 66, 22–33. https://doi.org/10.1159/000371618 (2015).
Google Scholar
Ezzati, M., Lopez, A. D., Rodgers, A., Vanderhoorn, S. & Murray, C. J. L. Selected major risk factors and global and regional burden of disease. Lancet 360, 1347–1360 (2002).
Google Scholar
Kramer, C. V. & Allen, S. Malnutrition in developing countries. Paediatr. Child Health 25, 422–427 (2015).
Google Scholar
Gibson, R. S., Hess, S. Y., Hotz, C. & Brown, K. H. Indicators of zinc status at the population level: a review of the evidence. Br. J. Nutr. 99, S14–S23. https://doi.org/10.1017/S0007114508006818V (2008).
Google Scholar
Chasapis, C. T., Loutsidou, A. C., Spiliopoulou, C. A. & Stefanidou, M. E. Zinc and human health: An update. Arch. Toxicol. 86, 521–553. https://doi.org/10.1007/s00204-011-0775-1 (2012).
Google Scholar
Bouis, H. E., Hotz, C., McClafferty, B., Meenakshi, J. V. & Pfeiffer, W. H. Biofortification: a new tool to reduce micronutrient malnutrition. Food Nutr. Bull. 32, S31–S40. https://doi.org/10.1177/15648265110321S105 (2011).
Google Scholar
Anuradha, N. et al. Pearl millet genetic variability for grain yield and micronutrients in the arid zone of India. J. Pharmaco. Phytochem. 7(1), 875–878 (2018).
Google Scholar
Satyavathi, C. T. et al. Stability analysis of Grain Iron and Zinc content in Pearl millet (Pennisetum glaucum (L.) R. Br.). Int. J. Tropical Agri. 33(2), 1387–1394 (2015).
Kodkany, B. S. et al. Biofortification of pearl millet with iron and zinc in a randomized controlled trial increases absorption of these minerals above physiologic requirements in young children. J. Nutr. 143, 1489–1493. https://doi.org/10.3945/jn.113.176677 (2013).
Google Scholar
Hirai, M. Y. et al. Integration of transcriptomics and metabolomics for understanding of global responses to nutritional stresses in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 101, 10205–10210. https://doi.org/10.1073/pnas.0403218101 (2004).
Google Scholar
Kulski, J.K. Next-Generation Sequencing -An Overview of the History, Tools, and “Omic” Applications (2016) https://doi.org/10.5772/61964.
Agarwal, P., Agarwal, P. K., Joshi, A. J., Sopory, S. K. & Reddy, M. K. Overexpression of PgDREB2A transcription factor enhances abiotic stress tolerance and activates downstream stress-responsive genes. Mol. Biol. Rep. 37(2), 1125–1135 (2010).
Google Scholar
Verma, D., Singla-Pareek, S. L., Rajagopal, D., Reddy, M. K. & Sopory, S. K. Functional validation of a novel isoform of Na+/H+ antiporter from Pennisetum glaucum for enhancing salinity tolerance in rice. J. Biosci. 32(3), 621–628. https://doi.org/10.1007/s12038-007-0061-9 (2007).
Google Scholar
Reddy, P. S., Reddy, G. M., Pandey, P., Chandrasekhar, K. & Reddy, M. K. Cloning and molecular characterization of a gene encoding late embryogenesis abundant protein from Pennisetum glaucum: protection against abiotic stresses. Mol. Biol. Rep. 39(6), 7163–7174. https://doi.org/10.1007/s11033-012-1548-5 (2012).
Google Scholar
Desai, M. K. et al. Structural and functional analysis of a salt stress inducible gene encoding voltage dependent anion channel (VDAC) from pearl millet (Pennisetum glaucum). Plant Physiol. Biochem. 44(7–9), 483–493 (2006).
Google Scholar
Singh, J., Reddy, P. S., Reddy, C. S. & Reddy, M. K. Molecular cloning and characterization of salt inducible dehydrin gene from the C4 plant Pennisetum glaucum. Plant Gene 4, 55–63. https://doi.org/10.1016/j.plgene (2015).
Google Scholar
Sankar, S. M. et al. Differential modulation of heat inducible genes across diverse genotypes and molecular cloning of a sHSP from Pearl millet [Pennisetum glaucum (L.) R. Br]. Front. Plant Sci. https://doi.org/10.3389/fpls/2021.659893 (2021).
Google Scholar
Jaiswal, S. et al. Transcriptomic signature of drought response in pearl millet (Pennisetum glaucum (L.) and development of web-genomic resources. Sci. Rep. 8(1), 3382 (2018).
Google Scholar
Shinde, H. et al. Comparative de novo transcriptomic profiling of the salinity stress responsiveness in contrasting pearl millet lines. Environ. Exp. Botany 155, 619–627 (2018).
Google Scholar
Strickler, S., Bombarely, A. & Mueller, L. Designing a transcriptome next-generation sequencing project for a nonmodel plant species. Am. J. Bot. 99, 257–266. https://doi.org/10.3732/ajb.1100292 (2012).
Google Scholar
Varshney, R. K. et al. Pearl millet genome sequence provides a resource to improve agronomic traits in arid environments. Nat. Biotech. 35, 969–976 (2017).
Google Scholar
Conesa, A. S., Gotz, J. M., Garcia-Gomez, J., Terol, M. & Talon, M. R. Blast 2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21(18), 3674–3676 (2005).
Google Scholar
Langmead, B. & Salzberg, S. Fast gapped-read alignment with Bowtie. Nat. Methods 9, 357–359. https://doi.org/10.1038/nmeth.1923 (2012).
Google Scholar
Robinson, M. D., McCarthy, D. J. & Smyth, G. K. Edger: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatic 26(1), 139–140 (2010).
Google Scholar
Usadel, B. et al. Co-expression tools for plant biology: Opportunities for hypothesis generation and caveats. Plant Cell Environ. 32(12), 1633–1651 (2009).
Google Scholar
Hamid, R. et al. Transcriptome profiling and cataloging differential gene expression in floral buds of fertile and sterile lines of cotton (Gossypium hirsutum L.). Gene 660, 80–91 (2018).
Google Scholar
Institute of Medicine. Food and Nutrition Board. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc: a Report of the Panel on Micronutrients. National Academy Press; 2001.
Lockyer, S., White, A. & Buttriss, J. L. Biofortified crops for tackling micronutrient deficiencies-what impact are these having in developing countries and could they be of relevance within Europe. Nutr. Bull. 43, 319–357 (2018).
Google Scholar
Singhal, T. et al. Singh N Multi environment quantitative trait loci mapping for grain iron and zinc content using biparental recombinant inbred line population in pearl millet. Front. Plant Sci. https://doi.org/10.3389/fpls/2021.659789 (2021).
Google Scholar
Singhal, T. et al. Identification of new stable and high iron rich fertility restorers in Pearl millet. Indian J. Genet. Plant Breed. 79(3), 552–562. https://doi.org/10.31742/IJGPB.79.3.4 (2019).
Google Scholar
Satyavathi, C. T., Singh, S. P., Sankar, M. S., Prabhu, K. V. & Gupta, H. S. PPMI 904 (IC0617290; INGR16004), a Pearl Millet (Pennisetum glaucum L.) Germplasm with high iron content of 91 mg/kg high zinc content of 78 mg/kg. Indian J. Plant Genet. Resources 31(1), 105–106 (2018).
Anuradha, N., Satyavathi, C. T., Bharadwaj, C., Bhat, J. & Pathy, T. L. Correlation studies on quality and other economic traits in pearl millet. Int. J. Chem. Stud. 6(5), 2041–2043 (2018).
Kumar, S. et al. Mapping grain iron and zinc content quantitative trait loci in an Iniadi-derived immortal population of pearl millet. Genes 9, 248. https://doi.org/10.3390/genes9050248 (2018).
Google Scholar
Anuradha, N., Satyavathi, C. T., Bharadwaj, C., Sankar, S. M. & Pathy, T. L. Association of agronomic traits and micronutrients in pearl millet. Int. J. Chem. Stud. 6(1), 181–184 (2018).
Google Scholar
Anuradha, N. et al. Deciphering genomic regions for high grain iron and zinc content using association mapping in pearl millet. Front. Plant Sci. 8, 412. https://doi.org/10.3389/fpls.2017.00412 (2017).
Google Scholar
Shanmugam, V. L. J. C. & Yeh, K. C. Control of Zn uptake in Arabidopsis halleri: a balance between Zn and Fe. Front. Plant Sci. 4, 281. https://doi.org/10.3389/fpls.2013.00281 (2013).
Google Scholar
Rout, G. R. & Sahoo, S. Role of iron in plant growth and metabolism. Rev. Agric. Sci. 3, 1–24 (2015).
Google Scholar
Kanehisa, M. & Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000).
Google Scholar
Kanehisa, M. KEGG bioinformatics resource for plant genomics and metabolomics. Methods Mol. Biol. 1374, 55–70 (2016).
Google Scholar
Kanehisa, M., Sato, Y. & Morishima, K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J. Mol. Biol. 428, 726–731 (2016).
Google Scholar
Mishra, V. K. et al. Comparative transcriptomic profiling of High- and Low- grain Zinc and Iron containing Indian wheat genotypes. Curr. Plant Bio. 18, 100105 (2019).
Google Scholar
Ludwig, Y. & Slamet-Loedin, I. H. Genetic biofortification to enrich rice and wheat grain iron: From genes to product. Front. Plant Sci. 10, 833. https://doi.org/10.3389/fpls.2019.00833 (2019).
Google Scholar
Margulies, M. et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature 437, 376–380. https://doi.org/10.1038/nature03959 (2005).
Google Scholar
Jaiswal, S. et al. Transcriptomic signature reveals mechanism of flower bud distortion in witches’-broom disease of soybean (Glycine max). BMC Plant Biol. 19, 26 (2019).
Google Scholar
Vatanparast, M. et al. Transcriptome sequencing and marker development in winged bean (Psophocarpus tetragonolobus Leguminosae). Sci. Rep. 6, 290. https://doi.org/10.1038/srep29070 (2016).
Google Scholar
Hrdlickova, R., Toloue, M. & Tian, B. RNA-Seq methods for transcriptome analysis. Wiley Interdiscip. Rev. RNA 8(1), e1364. https://doi.org/10.1002/wrna (2017).
Google Scholar
Jaiswal, S. et al. Transcriptome profiling of Indian sesame (Sissemum indicum L.) and discovery of genetic region markers. Bharatiya Krishi Anusandhan Patrika 35(3), 151–158 (2020).
Garg, R. et al. Gene discovery and tissue-specific transcriptome analysis in chickpea with massively parallel pyrosequencing and web resource development. Plant Physio. 156(4), 1661–1678. https://doi.org/10.1104/pp.111.178616 (2011).
Google Scholar
Kumar, A., Gaur, V. S., Goel, A. & Gupta, A. K. D. novo assembly and characterization of developing spikes transcriptome of finger millet (Eleusine coracana): a minor crop having nutraceutical properties. Plant Mol. Biol. Rep. 33, 905–922 (2015).
Google Scholar
Jo, Y. et al. De novo transcriptome assembly of Setatria italica variety Taejin. Genome Data 5(8), 121–122. https://doi.org/10.1016/j.gdata (2016).
Google Scholar
Zhang, Y. et al. Cloning and expression analysis of peanut (Arachis hypogaea L.) CHI gene. Electron. J. Biotech. 15(1), 5. https://doi.org/10.2225/vol15-issue1-fulltext-6 (2012).
Google Scholar
Yue, R. et al. Transcriptome analysis of cadmium-treated roots in maize (Zea mays L.). Front. Plant Sci. 7, 1298 (2016).
Google Scholar
Hamid, R., Jacob, F., Marashi, H., Rathod, V. & Tomar, R. S. Uncloaking lncRNA-meditated gene expression as a potential regulator of CMS in cotton (Gossypium hirsutum L.). Genomics 112, 3354–3364 (2020).
Google Scholar
Hamid, R., Marashi, H., Tomar, R. S., Shafaroudi, S. M. & Sabara, P. H. Transcriptome analysis identified aberrant gene expression in pollen developmental pathways leading to CGMS in cotton (Gossypium hirsutum L). PLoS ONE 14, e0218381 (2019).
Google Scholar
Kawakami, Y. & Bhullar, N. K. Molecular processes in iron and zinc homeostasis and their modulation for biofortification in rice. J. Integr. Plant Biol. 60, 1–32 (2018).
Google Scholar
Brumbarova, T., Bauer, P. & Ivanov, R. Molecular mechanisms governing Arabidopsis iron uptake. Trends Plant Sci. 20, 124–133 (2015).
Google Scholar
Connorton, J. M., Balk, J. & Rodríguez-Celma, J. Iron homeostasis in plants—A brief overview. Metallomics 9, 813–823 (2017).
Google Scholar
Lee, S. & An, G. Over-expression of OsIRT1 leads to increased iron and zinc accumulations in rice. Plant Cell Environ. 32, 408–416 (2009).
Google Scholar
Boonyaves, K., Wu, T. Y., Gruissem, W. & Bhullar, N. K. Enhanced grain iron levels in rice expressing an iron-regulated metal transporter, nicotianamine synthase, and ferritin gene cassette. Front. Plant Sci. 8, 130 (2017).
Google Scholar
Narayanan, N. et al. Biofortification of field-grown cassava by engineering expression of an iron transporter and ferritin. Nat. Biotechnol. 37, 144–151. https://doi.org/10.1038/s41587-018-0002-1 (2019).
Google Scholar
Curie, C. et al. Maize yellow stripe1 encodes a membrane protein directly involved in Fe (III) uptake. Nature 409, 346–349 (2001).
Google Scholar
Masuda, H. et al. Increase in iron and zinc concentrations in rice grains via the introduction of barley genes involved in phytosiderophore synthesis. Rice 1, 100–108. https://doi.org/10.1007/s12284-008-9007-6 (2008).
Google Scholar
Lee, S. et al. Disruption of OsYSL15 leads to iron inefficiency in rice plants. Plant Physiol. 150, 786–800 (2009).
Google Scholar

