Preloader

Microwave-assisted enzymatic hydrolysis to produce xylooligosaccharides from rice husk alkali-soluble arabinoxylan

  • 1.

    Worasuwannarak, N., Sonobe, T. & Tanthapanichakoon, W. Pyrolysis behaviors of rice straw, rice husk, and corncob by TG-MS technique. J. Anal. Appl. Pyrolysis 78, 265–271 (2007).

    CAS 

    Google Scholar 

  • 2.

    Hu, B. et al. On the mechanism of xylan pyrolysis by combined experimental and computational approaches. Proc. Combust. Inst. 38, 4215–4223 (2021).

    CAS 

    Google Scholar 

  • 3.

    Dornez, E., Gebruers, K., Delcour, J. A. & Courtin, C. M. Grain-associated xylanases: Occurrence, variability, and implications for cereal processing. Trends Food Sci. Technol. 20, 495–510 (2009).

    CAS 

    Google Scholar 

  • 4.

    Abouloifa, H. et al. The prebiotics (Fructo-oligosaccharides and Xylo-oligosaccharides) modulate the probiotic properties of Lactiplantibacillus and Levilactobacillus strains isolated from traditional fermented olive. World J. Microbiol. Biotechnol. 36, 1–12 (2020).

    Google Scholar 

  • 5.

    Singh, R. D., Banerjee, J. & Arora, A. Prebiotic potential of oligosaccharides: A focus on xylan derived oligosaccharides. Bioact. Carbohydr. Diet. Fiber 5, 19–30 (2015).

    Google Scholar 

  • 6.

    Terrasan, C. R., de Morais Junior, W. G. & Contesini, F. J. Enzyme Immobilization for Oligosaccharide Production (Elsevier, 2019).

    Google Scholar 

  • 7.

    Ávila, P. F., Martins, M., de Almeida Costa, F. A. & Goldbeck, R. Xylooligosaccharides production by commercial enzyme mixture from agricultural wastes and their prebiotic and antioxidant potential. Bioact. Carbohydr. Diet Fiber. 24, 100234 (2020).

    Google Scholar 

  • 8.

    Stahl, B., Zens, Y. & Boehm, G. Prebiotics with special emphasis on fructo-, galacto-, galacturono-, and xylooligosaccharides (2007).

  • 9.

    Mathew, S., Aronsson, A., Karlsson, E. N. & Adlercreutz, P. Xylo-and arabinoxylooligosaccharides from wheat bran by endoxylanases, utilisation by probiotic bacteria, and structural studies of the enzymes. Appl. Microbiol. Biotechnol. 102, 3105–3120 (2018).

    PubMed 
    CAS 

    Google Scholar 

  • 10.

    Juturu, V. & Wu, J. C. Microbial exo-xylanases: A mini review. Int. J. Appl. Biotechnol. Biochem. 174, 81–92 (2014).

    CAS 

    Google Scholar 

  • 11.

    Akpinar, O., Erdogan, K. & Bostanci, S. Enzymatic production of xylooligosaccharide from selected agricultural wastes. Food Bioprod. Process. 87, 145–151 (2009).

    CAS 

    Google Scholar 

  • 12.

    Biely, P., Vršanská, M., Tenkanen, M. & Kluepfel, D. Endo-β-1, 4-xylanase families: Differences in catalytic properties. J. Biotechnol. 57, 151–166 (1997).

    PubMed 
    CAS 

    Google Scholar 

  • 13.

    Dodd, D. & Cann, I. K. Enzymatic deconstruction of xylan for biofuel production. GCB Bioenergy 1, 2–17 (2009).

    PubMed 
    CAS 

    Google Scholar 

  • 14.

    Lam, N. D., Nagasawa, N. & Kume, T. Effect of radiation and fungal treatment on lignocelluloses and their biological activity. Radiat. Phys. Chem. Oxf. Engl. 1993(59), 393–398 (2000).

    ADS 

    Google Scholar 

  • 15.

    Aguilar-Reynosa, A. et al. Comparison of microwave and conduction-convection heating autohydrolysis pretreatment for bioethanol production. Bioresour. Technol. 243, 273–283 (2017).

    PubMed 
    CAS 

    Google Scholar 

  • 16.

    Hoang, A. T. et al. Insight into the recent advances of microwave pretreatment technologies for the conversion of lignocellulosic biomass into sustainable biofuel. Chemosphere 281, 130878 (2021).

    ADS 
    PubMed 
    CAS 

    Google Scholar 

  • 17.

    Gabhane, J., William, S. P., Vaidya, A. N., Mahapatra, K. & Chakrabarti, T. Influence of heating source on the efficacy of lignocellulosic pretreatment–a cellulosic ethanol perspective. Biomass Bioenergy 35, 96–102 (2011).

    CAS 

    Google Scholar 

  • 18.

    Gissibl, A. et al. Microwave pretreatment of paramylon enhances the enzymatic production of soluble β-1, 3-glucans with immunostimulatory activity. Carbohydr. Polym. 196, 339–347 (2018).

    PubMed 
    CAS 

    Google Scholar 

  • 19.

    Palm, M. & Zacchi, G. Extraction of hemicellulosic oligosaccharides from spruce using microwave oven or steam treatment. Biomacromol 4, 617–623 (2003).

    CAS 

    Google Scholar 

  • 20.

    Coelho, E., Rocha, M. A. M., Saraiva, J. A. & Coimbra, M. A. Microwave superheated water and dilute alkali extraction of brewers’ spent grain arabinoxylans and arabinoxylo-oligosaccharides. Carbohydr. Polym. 99, 415–422 (2014).

    PubMed 
    CAS 

    Google Scholar 

  • 21.

    Kundu, P., Kumar, S., Ahluwalia, V., Kansal, S. K. & Elumalai, S. Extraction of arabinoxylan from corncob through modified alkaline method to improve xylooligosaccharides synthesis. Bioresour. Technol. Rep. 3, 51–58 (2018).

    Google Scholar 

  • 22.

    Gibson, G. R. et al. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat. Rev. Gastroenterol. Hepatol. 14, 491–502 (2017).

    PubMed 

    Google Scholar 

  • 23.

    Swennen, K., Courtin, C. M. & Delcour, J. A. Non-digestible oligosaccharides with prebiotic properties. Crit. Rev. Food. Sci. Nutr. 46, 459–471 (2006).

    PubMed 
    CAS 

    Google Scholar 

  • 24.

    AOAC, B. A. M. Association of official analytical chemists. Official methods of analysis, Vol. 12 (2000).

  • 25.

    Jaichakan, P., Thi, H. N. D., Nakphaichit, M. & Klangphetch, W. The Effect of alkali pretreatment and acid debranching on rice husk, rice straw and defatted rice bran for xylobiose production by commercial xylanases. J. Sci. Technol. 11, 91–103 (2019).

    Google Scholar 

  • 26.

    McCleary, B. V. et al. Hydrolysis of wheat flour arabinoxylan, acid-debranched wheat flour arabinoxylan and arabino-xylo-oligosaccharides by β-xylanase, α-L-arabinofuranosidase and β-xylosidase. Carbohydr. Res. 407, 79–96 (2015).

    PubMed 
    CAS 

    Google Scholar 

  • 27.

    Sluiter, A. et al. Determination of structural carbohydrates and lignin in biomass. Lab. Anal. Proc. 1617, 1–16 (2008).

    Google Scholar 

  • 28.

    Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. T. & Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28, 350–356 (1956).

    CAS 

    Google Scholar 

  • 29.

    Miller, G. L. Use of dinitrosalicylic acid reagent for determination of reducing Miller sugar. Anal. Chem. 31, 426–428 (1959).

    CAS 

    Google Scholar 

  • 30.

    Jaichakan, P., Nhung, D. T. H., Nakphaichit, M. & Klangpetch, W. Intensification of cellulolytic hydrolysis of rice husk, rice straw, and defatted rice bran by sodium hydroxide pretreatment. FAB J. 7, 172–183 (2019).

    Google Scholar 

  • 31.

    Prommadee, P., Garnjanagoonchorn, W., de Lange, K. & Nitisinprasert, S. Characterization of Lactobacillus johnsonii KUNN19-2 and Pediococcus pentosaceus KUNNE6-1 isolated from thai-style fermented pork (Nham) for their probiotic properties in the gastrointestinal tract and immunomodulation. Agric. Nat. Resour. 46, 440–450 (2012).

    Google Scholar 

  • 32.

    Sobanbua, S. et al. Cloning and expression of the antimicrobial peptide from Lactobacillus reuteri KUB-AC5 and its characterization. Technology 16, 1013–1036 (2020).

    CAS 

    Google Scholar 

  • 33.

    Plupjeen, S. N., Chawjiraphan, W., Charoensiddhi, S., Nitisinprasert, S. & Nakphaichit, M. Lactococcus lactis KA-FF 1–4 reduces vancomycin-resistant enterococci and impacts the human gut microbiome. 3 Biotech 10, 1–11 (2020).

    Google Scholar 

  • 34.

    Nakphaichit, M. et al. The effect of including Lactobacillus reuteri KUB-AC5 during post-hatch feeding on the growth and ileum microbiota of broiler chickens. Poult. Sci. 90, 2753–2765 (2011).

    PubMed 
    CAS 

    Google Scholar 

  • 35.

    Minekus, M. et al. A standardised static in vitro digestion method suitable for food–an international consensus. Food Func. 5, 1113–1124 (2014).

    CAS 

    Google Scholar 

  • 36.

    Korakli, M., Gänzle, M. G. & Vogel, R. F. Metabolism by bifidobacteria and lactic acid bacteria of polysaccharides from wheat and rye, and exopolysaccharides produced by Lactobacillus sanfranciscensis. J. Appl. Microbiol. 92, 958–965 (2002).

    PubMed 
    CAS 

    Google Scholar 

  • 37.

    Ismail, M. S. & Waliuddin, A. M. Effect of rice husk ash on high strength concrete. Constr. Build. Mater. 10, 521–526 (1996).

    Google Scholar 

  • 38.

    Di Blasi, C., Signorelli, G., Di Russo, C. & Rea, G. Product distribution from pyrolysis of wood and agricultural residues. Ind. Eng. Chem. Res. 38, 2216–2224 (1999).

    Google Scholar 

  • 39.

    Garrote, G. D. H. P., Dominguez, H. & Parajo, J. C. Hydrothermal processing of lignocellulosic materials. Holz als roh-und werkstoff 57, 191–202 (1999).

    CAS 

    Google Scholar 

  • 40.

    Vegas, R., Alonso, J. L., Domínguez, H. & Parajó, J. C. Processing of rice husk autohydrolysis liquors for obtaining food ingredients. J. Agric. Food Chem. 52, 7311–7317 (2004).

    PubMed 
    CAS 

    Google Scholar 

  • 41.

    Desai, M. S. et al. A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell 167, 1339–1353 (2016).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • 42.

    Harmsen, P. F., Huijgen, W., Bermudez, L. & Bakker, R. Literature review of physical and chemical pretreatment processes for lignocellulosic biomass (No. 1184). Wageningen UR-Food & Biobased Research (2010).

  • 43.

    Brienzo, M., Carvalho, W. & Milagres, A. M. Xylooligosaccharides production from alkali-pretreated sugarcane bagasse using xylanases from Thermoascus aurantiacus. Appl. Biochem. Biotechnol. 162, 1195–1205 (2010).

    PubMed 
    CAS 

    Google Scholar 

  • 44.

    Bastos, R., Coelho, E. & Coimbra, M. A. Arabinoxylans from cereal by-products: Insights into structural features, recovery, and applications. In: Sustainable Recovery and Reutilization of Cereal Processing By-Products 227–251 (Woodhead Publishing, 2018).

  • 45.

    Chen, W. H., Tu, Y. J. & Sheen, H. K. Disruption of sugarcane bagasse lignocellulosic structure by means of dilute sulfuric acid pretreatment with microwave-assisted heating. Appl. Energy 88, 2726–2734 (2011).

    CAS 

    Google Scholar 

  • 46.

    Lafond, M., Guais, O., Maestracci, M., Bonnin, E. & Giardina, T. Four GH11 xylanases from the xylanolytic fungus Talaromyces versatilis act differently on (arabino) xylans. Appl. Microbiol. Biotechnol. 98, 6339–6352 (2014).

    PubMed 
    CAS 

    Google Scholar 

  • 47.

    Ethaib, S., Omar, R., Kamal, S. M. & Biak, D. A. Microwave-assisted pretreatment of lignocellulosic biomass: A review. J. Eng. Sci. Technol. 10, 97–109 (2015).

    Google Scholar 

  • 48.

    Diaz, A. B. et al. Evaluation of microwave-assisted pretreatment of lignocellulosic biomass immersed in alkaline glycerol for fermentable sugars production. Bioresour. Technol. 185, 316–323 (2015).

    PubMed 
    CAS 

    Google Scholar 

  • 49.

    López-Linares, J. C., Lucas, S., García-Cubero, M. T., Jiménez, J. J. & Coca, M. A biorefinery based on brewers spent grains: Arabinoxylans recovery by microwave assisted pretreatment integrated with butanol production. Ind. Crops Prod. 158, 113044 (2020).

    Google Scholar 

  • 50.

    Puligundla, P., Oh, S. E. & Mok, C. Microwave-assisted pretreatment technologies for the conversion of lignocellulosic biomass to sugars and ethanol: A review. Carbon Lett. 17, 1–10 (2016).

    Google Scholar 

  • 51.

    Kim, J. S., Lee, Y. Y. & Kim, T. H. A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. Bioresour. Technol. 199, 42–48 (2016).

    PubMed 
    CAS 

    Google Scholar 

  • 52.

    Binod, P. et al. Short duration microwave assisted pretreatment enhances the enzymatic saccharification and fermentable sugar yield from sugarcane bagasse. Renew. Energy 37, 109–116 (2012).

    CAS 

    Google Scholar 

  • 53.

    Belyaev, I. Non-thermal biological effects of microwaves. Microw. Rev. 11, 13–29 (2005).

    Google Scholar 

  • 54.

    Wang, T. H. & Lu, S. Production of xylooligosaccharide from wheat bran by microwave assisted enzymatic hydrolysis. Food Chem. 138, 1531–1535 (2013).

    PubMed 
    CAS 

    Google Scholar 

  • 55.

    Roos, A. A., Persson, T., Krawczyk, H., Zacchi, G. & Stålbrand, H. Extraction of water-soluble hemicelluloses from barley husks. Bioresour. Technol. 100, 763–769 (2009).

    PubMed 
    CAS 

    Google Scholar 

  • 56.

    Jiang, Y. et al. Optimization of ultrasonic-microwave assisted alkali extraction of arabinoxylan from the corn bran using response surface methodology. Int. J. Biol. Macromol. 128, 452–458 (2019).

    PubMed 
    CAS 

    Google Scholar 

  • 57.

    Collins, T., Gerday, C. & Feller, G. Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol. Rev. 29, 3–23 (2005).

    PubMed 
    CAS 

    Google Scholar 

  • 58.

    Cheng, Y. S. et al. Structural analysis of a glycoside hydrolase family 11 xylanase from Neocallimastix patriciarum: Insights into the molecular basis of a thermophilic enzyme. J. Biol. Chem. 289, 11020–11028 (2014).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • 59.

    Morgan, N. K., Wallace, A., Bedford, M. R. & Choct, M. Efficiency of xylanases from families 10 and 11 in production of xylo-oligosaccharides from wheat arabinoxylans. Carbohydr. Polym. 167, 290–296 (2017).

    PubMed 
    CAS 

    Google Scholar 

  • 60.

    Ataei, D., Hamidi-Esfahani, Z. & Ahmadi-Gavlighi, H. Enzymatic production of xylooligosaccharide from date (Phoenix dactylifera L.) seed. Food Sci. Nutr. 8, 6699–6707 (2020).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • 61.

    Falk, P. et al. Production of arabinoxylan-oligosaccharide mixtures of varying composition from rye bran by a combination of process conditions and type of xylanase. Bioresour. Technol. 174, 118–125 (2014).

    Google Scholar 

  • 62.

    Roberfroid, M. B. Prebiotics: Concept, Definition, Criteria, Methodologies, and Products 39–69 (CRC Press, 2008).

    Google Scholar 

  • 63.

    Neyrinck, A. M. et al. Wheat-derived arabinoxylan oligosaccharides with prebiotic effect increase satietogenic gut peptides and reduce metabolic endotoxemia in diet-induced obese mice. Nutr. Diabetes 2, e28–e28 (2012).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • 64.

    Kim, J. H., Shoemaker, S. P. & Mills, D. A. Relaxed control of sugar utilization in Lactobacillus brevis. Microbiology 155, 1351–1359 (2009).

    PubMed 
    CAS 

    Google Scholar 

  • 65.

    Kariyawasam, K. M. G. M. M., Lee, N. K. & Paik, H. D. Synbiotic yoghurt supplemented with novel probiotic Lactobacillus brevis KU200019 and fructooligosaccharides. Food Biosci. 39, 100835 (2021).

    CAS 

    Google Scholar 

  • 66.

    Moura, P. et al. In vitro fermentation of xylo-oligosaccharides from corn cobs autohydrolysis by Bifidobacterium and Lactobacillus strains. LWT 40, 963–972 (2007).

    CAS 

    Google Scholar 

  • 67.

    Iliev, I., Vasileva, T., Bivolarski, V., Momchilova, A. & Ivanova, I. Metabolic profiling of xylooligosaccharides by lactobacilli. Polymers 12, 2387 (2020).

    PubMed Central 
    CAS 

    Google Scholar 

  • 68.

    Boron, W. F. & Boulpaep, E. L. Medical Physiology, 2e Updated Edition E-Book: With Student Consult Online Access (Elsevier Health Sciences, 2012).

    Google Scholar 

  • 69.

    de Figueiredo, F. C., de Barros Ranke, F. F. & de Oliva-Neto, P. Evaluation of xylooligosaccharides and fructooligosaccharides on digestive enzymes hydrolysis and as a nutrient for different probiotics and Salmonella typhimurium. Lwt 118, 108761 (2020).

    Google Scholar 

  • 70.

    Roberfroid, M. Dietary fiber, inulin, and oligofructose: A review comparing their physiological effects. Crit. Rev. Food Sci. Nutr. 33, 103–148 (1993).

    PubMed 
    CAS 

    Google Scholar 

  • 71.

    Janeček, Š, Svensson, B. & MacGregor, E. A. α-Amylase: An enzyme specificity found in various families of glycoside hydrolases. Cell. Mol. Life Sci. 71, 1149–1170 (2014).

    PubMed 

    Google Scholar 

  • Source link