Worasuwannarak, N., Sonobe, T. & Tanthapanichakoon, W. Pyrolysis behaviors of rice straw, rice husk, and corncob by TG-MS technique. J. Anal. Appl. Pyrolysis 78, 265–271 (2007).
Google Scholar
Hu, B. et al. On the mechanism of xylan pyrolysis by combined experimental and computational approaches. Proc. Combust. Inst. 38, 4215–4223 (2021).
Google Scholar
Dornez, E., Gebruers, K., Delcour, J. A. & Courtin, C. M. Grain-associated xylanases: Occurrence, variability, and implications for cereal processing. Trends Food Sci. Technol. 20, 495–510 (2009).
Google Scholar
Abouloifa, H. et al. The prebiotics (Fructo-oligosaccharides and Xylo-oligosaccharides) modulate the probiotic properties of Lactiplantibacillus and Levilactobacillus strains isolated from traditional fermented olive. World J. Microbiol. Biotechnol. 36, 1–12 (2020).
Singh, R. D., Banerjee, J. & Arora, A. Prebiotic potential of oligosaccharides: A focus on xylan derived oligosaccharides. Bioact. Carbohydr. Diet. Fiber 5, 19–30 (2015).
Terrasan, C. R., de Morais Junior, W. G. & Contesini, F. J. Enzyme Immobilization for Oligosaccharide Production (Elsevier, 2019).
Ávila, P. F., Martins, M., de Almeida Costa, F. A. & Goldbeck, R. Xylooligosaccharides production by commercial enzyme mixture from agricultural wastes and their prebiotic and antioxidant potential. Bioact. Carbohydr. Diet Fiber. 24, 100234 (2020).
Stahl, B., Zens, Y. & Boehm, G. Prebiotics with special emphasis on fructo-, galacto-, galacturono-, and xylooligosaccharides (2007).
Mathew, S., Aronsson, A., Karlsson, E. N. & Adlercreutz, P. Xylo-and arabinoxylooligosaccharides from wheat bran by endoxylanases, utilisation by probiotic bacteria, and structural studies of the enzymes. Appl. Microbiol. Biotechnol. 102, 3105–3120 (2018).
Google Scholar
Juturu, V. & Wu, J. C. Microbial exo-xylanases: A mini review. Int. J. Appl. Biotechnol. Biochem. 174, 81–92 (2014).
Google Scholar
Akpinar, O., Erdogan, K. & Bostanci, S. Enzymatic production of xylooligosaccharide from selected agricultural wastes. Food Bioprod. Process. 87, 145–151 (2009).
Google Scholar
Biely, P., Vršanská, M., Tenkanen, M. & Kluepfel, D. Endo-β-1, 4-xylanase families: Differences in catalytic properties. J. Biotechnol. 57, 151–166 (1997).
Google Scholar
Dodd, D. & Cann, I. K. Enzymatic deconstruction of xylan for biofuel production. GCB Bioenergy 1, 2–17 (2009).
Google Scholar
Lam, N. D., Nagasawa, N. & Kume, T. Effect of radiation and fungal treatment on lignocelluloses and their biological activity. Radiat. Phys. Chem. Oxf. Engl. 1993(59), 393–398 (2000).
Google Scholar
Aguilar-Reynosa, A. et al. Comparison of microwave and conduction-convection heating autohydrolysis pretreatment for bioethanol production. Bioresour. Technol. 243, 273–283 (2017).
Google Scholar
Hoang, A. T. et al. Insight into the recent advances of microwave pretreatment technologies for the conversion of lignocellulosic biomass into sustainable biofuel. Chemosphere 281, 130878 (2021).
Google Scholar
Gabhane, J., William, S. P., Vaidya, A. N., Mahapatra, K. & Chakrabarti, T. Influence of heating source on the efficacy of lignocellulosic pretreatment–a cellulosic ethanol perspective. Biomass Bioenergy 35, 96–102 (2011).
Google Scholar
Gissibl, A. et al. Microwave pretreatment of paramylon enhances the enzymatic production of soluble β-1, 3-glucans with immunostimulatory activity. Carbohydr. Polym. 196, 339–347 (2018).
Google Scholar
Palm, M. & Zacchi, G. Extraction of hemicellulosic oligosaccharides from spruce using microwave oven or steam treatment. Biomacromol 4, 617–623 (2003).
Google Scholar
Coelho, E., Rocha, M. A. M., Saraiva, J. A. & Coimbra, M. A. Microwave superheated water and dilute alkali extraction of brewers’ spent grain arabinoxylans and arabinoxylo-oligosaccharides. Carbohydr. Polym. 99, 415–422 (2014).
Google Scholar
Kundu, P., Kumar, S., Ahluwalia, V., Kansal, S. K. & Elumalai, S. Extraction of arabinoxylan from corncob through modified alkaline method to improve xylooligosaccharides synthesis. Bioresour. Technol. Rep. 3, 51–58 (2018).
Gibson, G. R. et al. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat. Rev. Gastroenterol. Hepatol. 14, 491–502 (2017).
Google Scholar
Swennen, K., Courtin, C. M. & Delcour, J. A. Non-digestible oligosaccharides with prebiotic properties. Crit. Rev. Food. Sci. Nutr. 46, 459–471 (2006).
Google Scholar
AOAC, B. A. M. Association of official analytical chemists. Official methods of analysis, Vol. 12 (2000).
Jaichakan, P., Thi, H. N. D., Nakphaichit, M. & Klangphetch, W. The Effect of alkali pretreatment and acid debranching on rice husk, rice straw and defatted rice bran for xylobiose production by commercial xylanases. J. Sci. Technol. 11, 91–103 (2019).
McCleary, B. V. et al. Hydrolysis of wheat flour arabinoxylan, acid-debranched wheat flour arabinoxylan and arabino-xylo-oligosaccharides by β-xylanase, α-L-arabinofuranosidase and β-xylosidase. Carbohydr. Res. 407, 79–96 (2015).
Google Scholar
Sluiter, A. et al. Determination of structural carbohydrates and lignin in biomass. Lab. Anal. Proc. 1617, 1–16 (2008).
Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. T. & Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28, 350–356 (1956).
Google Scholar
Miller, G. L. Use of dinitrosalicylic acid reagent for determination of reducing Miller sugar. Anal. Chem. 31, 426–428 (1959).
Google Scholar
Jaichakan, P., Nhung, D. T. H., Nakphaichit, M. & Klangpetch, W. Intensification of cellulolytic hydrolysis of rice husk, rice straw, and defatted rice bran by sodium hydroxide pretreatment. FAB J. 7, 172–183 (2019).
Prommadee, P., Garnjanagoonchorn, W., de Lange, K. & Nitisinprasert, S. Characterization of Lactobacillus johnsonii KUNN19-2 and Pediococcus pentosaceus KUNNE6-1 isolated from thai-style fermented pork (Nham) for their probiotic properties in the gastrointestinal tract and immunomodulation. Agric. Nat. Resour. 46, 440–450 (2012).
Sobanbua, S. et al. Cloning and expression of the antimicrobial peptide from Lactobacillus reuteri KUB-AC5 and its characterization. Technology 16, 1013–1036 (2020).
Google Scholar
Plupjeen, S. N., Chawjiraphan, W., Charoensiddhi, S., Nitisinprasert, S. & Nakphaichit, M. Lactococcus lactis KA-FF 1–4 reduces vancomycin-resistant enterococci and impacts the human gut microbiome. 3 Biotech 10, 1–11 (2020).
Nakphaichit, M. et al. The effect of including Lactobacillus reuteri KUB-AC5 during post-hatch feeding on the growth and ileum microbiota of broiler chickens. Poult. Sci. 90, 2753–2765 (2011).
Google Scholar
Minekus, M. et al. A standardised static in vitro digestion method suitable for food–an international consensus. Food Func. 5, 1113–1124 (2014).
Google Scholar
Korakli, M., Gänzle, M. G. & Vogel, R. F. Metabolism by bifidobacteria and lactic acid bacteria of polysaccharides from wheat and rye, and exopolysaccharides produced by Lactobacillus sanfranciscensis. J. Appl. Microbiol. 92, 958–965 (2002).
Google Scholar
Ismail, M. S. & Waliuddin, A. M. Effect of rice husk ash on high strength concrete. Constr. Build. Mater. 10, 521–526 (1996).
Di Blasi, C., Signorelli, G., Di Russo, C. & Rea, G. Product distribution from pyrolysis of wood and agricultural residues. Ind. Eng. Chem. Res. 38, 2216–2224 (1999).
Garrote, G. D. H. P., Dominguez, H. & Parajo, J. C. Hydrothermal processing of lignocellulosic materials. Holz als roh-und werkstoff 57, 191–202 (1999).
Google Scholar
Vegas, R., Alonso, J. L., Domínguez, H. & Parajó, J. C. Processing of rice husk autohydrolysis liquors for obtaining food ingredients. J. Agric. Food Chem. 52, 7311–7317 (2004).
Google Scholar
Desai, M. S. et al. A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell 167, 1339–1353 (2016).
Google Scholar
Harmsen, P. F., Huijgen, W., Bermudez, L. & Bakker, R. Literature review of physical and chemical pretreatment processes for lignocellulosic biomass (No. 1184). Wageningen UR-Food & Biobased Research (2010).
Brienzo, M., Carvalho, W. & Milagres, A. M. Xylooligosaccharides production from alkali-pretreated sugarcane bagasse using xylanases from Thermoascus aurantiacus. Appl. Biochem. Biotechnol. 162, 1195–1205 (2010).
Google Scholar
Bastos, R., Coelho, E. & Coimbra, M. A. Arabinoxylans from cereal by-products: Insights into structural features, recovery, and applications. In: Sustainable Recovery and Reutilization of Cereal Processing By-Products 227–251 (Woodhead Publishing, 2018).
Chen, W. H., Tu, Y. J. & Sheen, H. K. Disruption of sugarcane bagasse lignocellulosic structure by means of dilute sulfuric acid pretreatment with microwave-assisted heating. Appl. Energy 88, 2726–2734 (2011).
Google Scholar
Lafond, M., Guais, O., Maestracci, M., Bonnin, E. & Giardina, T. Four GH11 xylanases from the xylanolytic fungus Talaromyces versatilis act differently on (arabino) xylans. Appl. Microbiol. Biotechnol. 98, 6339–6352 (2014).
Google Scholar
Ethaib, S., Omar, R., Kamal, S. M. & Biak, D. A. Microwave-assisted pretreatment of lignocellulosic biomass: A review. J. Eng. Sci. Technol. 10, 97–109 (2015).
Diaz, A. B. et al. Evaluation of microwave-assisted pretreatment of lignocellulosic biomass immersed in alkaline glycerol for fermentable sugars production. Bioresour. Technol. 185, 316–323 (2015).
Google Scholar
López-Linares, J. C., Lucas, S., García-Cubero, M. T., Jiménez, J. J. & Coca, M. A biorefinery based on brewers spent grains: Arabinoxylans recovery by microwave assisted pretreatment integrated with butanol production. Ind. Crops Prod. 158, 113044 (2020).
Puligundla, P., Oh, S. E. & Mok, C. Microwave-assisted pretreatment technologies for the conversion of lignocellulosic biomass to sugars and ethanol: A review. Carbon Lett. 17, 1–10 (2016).
Kim, J. S., Lee, Y. Y. & Kim, T. H. A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. Bioresour. Technol. 199, 42–48 (2016).
Google Scholar
Binod, P. et al. Short duration microwave assisted pretreatment enhances the enzymatic saccharification and fermentable sugar yield from sugarcane bagasse. Renew. Energy 37, 109–116 (2012).
Google Scholar
Belyaev, I. Non-thermal biological effects of microwaves. Microw. Rev. 11, 13–29 (2005).
Wang, T. H. & Lu, S. Production of xylooligosaccharide from wheat bran by microwave assisted enzymatic hydrolysis. Food Chem. 138, 1531–1535 (2013).
Google Scholar
Roos, A. A., Persson, T., Krawczyk, H., Zacchi, G. & Stålbrand, H. Extraction of water-soluble hemicelluloses from barley husks. Bioresour. Technol. 100, 763–769 (2009).
Google Scholar
Jiang, Y. et al. Optimization of ultrasonic-microwave assisted alkali extraction of arabinoxylan from the corn bran using response surface methodology. Int. J. Biol. Macromol. 128, 452–458 (2019).
Google Scholar
Collins, T., Gerday, C. & Feller, G. Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol. Rev. 29, 3–23 (2005).
Google Scholar
Cheng, Y. S. et al. Structural analysis of a glycoside hydrolase family 11 xylanase from Neocallimastix patriciarum: Insights into the molecular basis of a thermophilic enzyme. J. Biol. Chem. 289, 11020–11028 (2014).
Google Scholar
Morgan, N. K., Wallace, A., Bedford, M. R. & Choct, M. Efficiency of xylanases from families 10 and 11 in production of xylo-oligosaccharides from wheat arabinoxylans. Carbohydr. Polym. 167, 290–296 (2017).
Google Scholar
Ataei, D., Hamidi-Esfahani, Z. & Ahmadi-Gavlighi, H. Enzymatic production of xylooligosaccharide from date (Phoenix dactylifera L.) seed. Food Sci. Nutr. 8, 6699–6707 (2020).
Google Scholar
Falk, P. et al. Production of arabinoxylan-oligosaccharide mixtures of varying composition from rye bran by a combination of process conditions and type of xylanase. Bioresour. Technol. 174, 118–125 (2014).
Roberfroid, M. B. Prebiotics: Concept, Definition, Criteria, Methodologies, and Products 39–69 (CRC Press, 2008).
Neyrinck, A. M. et al. Wheat-derived arabinoxylan oligosaccharides with prebiotic effect increase satietogenic gut peptides and reduce metabolic endotoxemia in diet-induced obese mice. Nutr. Diabetes 2, e28–e28 (2012).
Google Scholar
Kim, J. H., Shoemaker, S. P. & Mills, D. A. Relaxed control of sugar utilization in Lactobacillus brevis. Microbiology 155, 1351–1359 (2009).
Google Scholar
Kariyawasam, K. M. G. M. M., Lee, N. K. & Paik, H. D. Synbiotic yoghurt supplemented with novel probiotic Lactobacillus brevis KU200019 and fructooligosaccharides. Food Biosci. 39, 100835 (2021).
Google Scholar
Moura, P. et al. In vitro fermentation of xylo-oligosaccharides from corn cobs autohydrolysis by Bifidobacterium and Lactobacillus strains. LWT 40, 963–972 (2007).
Google Scholar
Iliev, I., Vasileva, T., Bivolarski, V., Momchilova, A. & Ivanova, I. Metabolic profiling of xylooligosaccharides by lactobacilli. Polymers 12, 2387 (2020).
Google Scholar
Boron, W. F. & Boulpaep, E. L. Medical Physiology, 2e Updated Edition E-Book: With Student Consult Online Access (Elsevier Health Sciences, 2012).
de Figueiredo, F. C., de Barros Ranke, F. F. & de Oliva-Neto, P. Evaluation of xylooligosaccharides and fructooligosaccharides on digestive enzymes hydrolysis and as a nutrient for different probiotics and Salmonella typhimurium. Lwt 118, 108761 (2020).
Roberfroid, M. Dietary fiber, inulin, and oligofructose: A review comparing their physiological effects. Crit. Rev. Food Sci. Nutr. 33, 103–148 (1993).
Google Scholar
Janeček, Š, Svensson, B. & MacGregor, E. A. α-Amylase: An enzyme specificity found in various families of glycoside hydrolases. Cell. Mol. Life Sci. 71, 1149–1170 (2014).
Google Scholar

