Preloader

Engineering the amoeba Dictyostelium discoideum for biosynthesis of a cannabinoid precursor and other polyketides

  • 1.

    Hertweck, C. The biosynthetic logic of polyketide diversity. Angew. Chem. Int. Ed. Engl. 48, 4688–4716 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • 2.

    Austin, M. B. & Noel, J. P. The chalcone synthase superfamily of type III polyketide synthases. Nat. Prod. Rep. 20, 79–110 (2003).

    CAS 
    PubMed 

    Google Scholar 

  • 3.

    Lim, Y. P., Go, M. K. & Yew, W. S. Exploiting the biosynthetic potential of type III polyketide synthases. Molecules 21, 806 (2016).

  • 4.

    Morita, H., Wong, C. P. & Abe, I. How structural subtleties lead to molecular diversity for the type III polyketide synthases. J. Biol. Chem. 294, 15121–15136 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 5.

    Sunil, C. & Xu, B. An insight into the health-promoting effects of taxifolin (dihydroquercetin). Phytochemistry 166, 112066 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 6.

    de la Lastra, C. A. & Villegas, I. Resveratrol as an antioxidant and pro-oxidant agent: Mechanisms and clinical implications. Biochem. Soc. Trans. 35, 1156–1160 (2007).

    PubMed 

    Google Scholar 

  • 7.

    Staunton, J. & Weissman, K. J. Polyketide biosynthesis: a millennium review. Nat. Prod. Rep. 18, 380–416 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • 8.

    Fellermeier, M. & Zenk, M. H. Prenylation of olivetolate by a hemp transferase yields cannabigerolic acid, the precursor of tetrahydrocannabinol. FEBS Lett. 427, 283–285 (1998).

    CAS 
    PubMed 

    Google Scholar 

  • 9.

    Whiting, P. F. et al. Cannabinoids for medical use: a systematic review and meta-analysis. JAMA 313, 2456–2473 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 10.

    Nivina, A., Yuet, K. P., Hsu, J. & Khosla, C. Evolution and diversity of assembly-line polyketide synthases. Chem. Rev. 119, 12524–12547 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 11.

    Palmer, C. M. & Alper, H. S. Expanding the chemical palette of industrial microbes: metabolic engineering for type III PKS-derived polyketides. Biotechnol. J. 14, 1700463 (2019).

    Google Scholar 

  • 12.

    Luo, X. et al. Complete biosynthesis of cannabinoids and their unnatural analogues in yeast. Nature 567, 123–126 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 13.

    Chen, X. et al. Terpene synthase genes in eukaryotes beyond plants and fungi: occurrence in social amoebae. Proc. Natl Acad. Sci. USA 113, 12132–12137 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 14.

    Barnett, R. & Stallforth, P. Natural products from social amoebae. Chemistry 24, 4202–4214 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 15.

    Eichinger, L. et al. The genome of the social amoeba Dictyostelium discoideum. Nature 435, 43–57 (2005).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 16.

    Zucko, J. et al. Polyketide synthase genes and the natural products potential of Dictyostelium discoideum. Bioinformatics 23, 2543–2549 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • 17.

    Ghosh, R. et al. Dissecting the functional role of polyketide synthases in Dictyostelium discoideum: biosynthesis of the differentiation regulating factor 4-methyl-5-pentylbenzene-1,3-diol. J. Biol. Chem. 283, 11348–11354 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • 18.

    Heidel, A. J. et al. Phylogeny-wide analysis of social amoeba genomes highlights ancient origins for complex intercellular communication. Genome Res. 21, 1882–1891 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 19.

    Austin, M. B. et al. Biosynthesis of Dictyostelium discoideum differentiation-inducing factor by a hybrid type I fatty acid-type III polyketide synthase. Nat. Chem. Biol. 2, 494–502 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 20.

    Herbst, D. A., Townsend, C. A. & Maier, T. The architectures of iterative type I PKS and FAS. Nat. Prod. Rep. 35, 1046–1069 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 21.

    Shimizu, Y., Ogata, H. & Goto, S. Type III polyketide synthases: functional classification and phylogenomics. ChemBioChem 18, 50–65 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 22.

    Fey, P., Kowal, A. S., Gaudet, P., Pilcher, K. E. & Chisholm, R. L. Protocols for growth and development of Dictyostelium discoideum. Nat. Protoc. 2, 1307–1316 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • 23.

    Morris, H. R., Taylor, G. W., Masento, M. S., Jermyn, K. A. & Kay, R. R. Chemical structure of the morphogen differentiation inducing factor from Dictyostelium discoideum. Nature 328, 811–814 (1987).

    CAS 
    PubMed 

    Google Scholar 

  • 24.

    Kay, R. R. & Jermyn, K. A. A possible morphogen controlling differentiation in Dictyostelium. Nature 303, 242–244 (1983).

    CAS 
    PubMed 

    Google Scholar 

  • 25.

    Carvalho, A., Hansen, E. H., Kayser, O., Carlsen, S. & Stehle, F. Designing microorganisms for heterologous biosynthesis of cannabinoids. FEMS Yeast Res. 17, fox037 (2017).

  • 26.

    Taura, F. et al. Characterization of olivetol synthase, a polyketide synthase putatively involved in cannabinoid biosynthetic pathway. FEBS Lett. 583, 2061–2066 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • 27.

    Gagne, S. J. et al. Identification of olivetolic acid cyclase from Cannabis sativa reveals a unique catalytic route to plant polyketides. Proc. Natl Acad. Sci. USA 109, 12811–12816 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 28.

    Morgan-Kiss, R. M. & Cronan, J. E. The Escherichia coli fadK (ydiD) gene encodes an anerobically regulated short chain acyl-CoA synthetase. J. Biol. Chem. 279, 37324–37333 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • 29.

    Kay, R. R. The biosynthesis of differentiation-inducing factor, a chlorinated signal molecule regulating Dictyostelium development. J. Biol. Chem. 273, 2669–2675 (1998).

    CAS 
    PubMed 

    Google Scholar 

  • 30.

    Narita, T. B., Koide, K., Morita, N. & Saito, T. Dictyostelium hybrid polyketide synthase, SteelyA, produces 4-methyl-5-pentylbenzene-1,3-diol and induces spore maturation. FEMS Microbiol. Lett. 319, 82–87 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • 31.

    Saito, T. et al. Identification of new differentiation inducing factors from Dictyostelium discoideum. Biochim. Biophys. Acta 1760, 754–761 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • 32.

    Salehi, B. et al. Resveratrol: a double-edged sword in health benefits. Biomedicines 6, 91 (2018).

  • 33.

    Hoefgen, S. et al. Facile assembly and fluorescence-based screening method for heterologous expression of biosynthetic pathways in fungi. Metab. Eng. 48, 44–51 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 34.

    Veltman, D. M., Keizer-Gunnink, I. & Haastert, P. J. An extrachromosomal, inducible expression system for Dictyostelium discoideum. Plasmid 61, 119–125 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • 35.

    Milke, L., Aschenbrenner, J., Marienhagen, J. & Kallscheuer, N. Production of plant-derived polyphenols in microorganisms: current state and perspectives. Appl. Microbiol. Biotechnol. 102, 1575–1585 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 36.

    Wang, S. et al. Metabolic engineering of Escherichia coli for the biosynthesis of various phenylpropanoid derivatives. Metab. Eng. 29, 153–159 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 37.

    Unkles, S. E., Valiante, V., Mattern, D. J. & Brakhage, A. A. Synthetic biology tools for bioprospecting of natural products in eukaryotes. Chem. Biol. 21, 502–508 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 38.

    Katz, K. S. & Ratner, D. I. Homologous recombination and the repair of double-strand breaks during cotransformation of Dictyostelium discoideum. Mol. Cell. Biol. 8, 2779–2786 (1988).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 39.

    Wiegand, S., Kruse, J., Gronemann, S. & Hammann, C. Efficient generation of gene knockout plasmids for Dictyostelium discoideum using one-step cloning. Genomics 97, 321–325 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • 40.

    Kuspa, A. & Loomis, W. F. Tagging developmental genes in Dictyostelium by restriction enzyme-mediated integration of plasmid DNA. Proc. Natl Acad. Sci. USA 89, 8803–8807 (1992).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 41.

    Sekine, R., Kawata, T. & Muramoto, T. CRISPR/Cas9 mediated targeting of multiple genes in Dictyostelium. Sci. Rep. 8, 8471 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 42.

    Tan, Z., Clomburg, J. M. & Gonzalez, R. Synthetic pathway for the production of olivetolic acid in Escherichia coli. ACS Synth. Biol. 7, 1886–1896 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 43.

    Lu, Y. et al. Production of the soluble human Fas ligand by Dictyostelium discoideum cultivated on a synthetic medium. J. Biotechnol. 108, 243–251 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • 44.

    Vaknin, Y. et al. Identification and characterization of a novel Aspergillus fumigatus rhomboid family putative protease, RbdA, involved in hypoxia sensing and virulence. Infect. Immun. 84, 1866–1878 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 45.

    Levi, S., Polyakov, M. & Egelhoff, T. T. Green fluorescent protein and epitope tag fusion vectors for Dictyostelium discoideum. Plasmid 44, 231–238 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • 46.

    Fey, P., Dodson, R. J., Basu, S. & Chisholm, R. L. In: Dictyostelium discoideum Protocols (eds Eichinger, L. & Rivero, F.) 59–92 (Humana Press, 2013).

  • 47.

    Hirst, J., Kay, R. R. & Traynor, D. Dictyostelium cultivation, transfection, microscopy and fractionation. Bio. Protoc. 5, 1485 (2015).

  • 48.

    Meier, K. et al. Correlation for the maximum oxygen transfer capacity in shake flasks for a wide range of operating conditions and for different culture media. Biochem. Eng. J. 109, 228–235 (2016).

    CAS 

    Google Scholar 

  • Source link