Preloader

Sustainable green approach to synthesize Fe3O4/α-Fe2O3 nanocomposite using waste pulp of Syzygium cumini and its application in functional stability of microbial cellulases 

  • 1.

    Satari, B., Karimi, K. & Kumar, R. Cellulose solvent-based pretreatment for enhanced second-generation biofuel production: a review. Sustain. Energy Fuels 3, 11–62 (2019).

    CAS 

    Google Scholar 

  • 2.

    Xue, D. et al. Tandem integration of aerobic fungal cellulase production, lignocellulose substrate saccharification and anaerobic ethanol fermentation by a modified gas lift bioreactor. Bioresour. Technol. 302, 122902 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 3.

    Liu, C.-G. et al. Cellulosic ethanol production: progress, challenges and strategies for solutions. Biotechnol. Adv. 37, 491–504 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 4.

    Liu, H. et al. Comparative study of two different alkali-mechanical pretreatments of corn stover for bioethanol production. Fuel 221, 21–27 (2018).

    CAS 

    Google Scholar 

  • 5.

    Patel, A. K., Singhania, R. R., Sim, S. J. & Pandey, A. Thermostable cellulases: current status and perspectives. Bioresour. Technol. 279, 385–392 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 6.

    Vaishnav, N. et al. Penicillium: the next emerging champion for cellulase production. Bioresour. Technol. Rep. 2, 131–140 (2018).

    Google Scholar 

  • 7.

    Srivastava, N. et al. Advances in nanomaterials induced biohydrogen production using waste biomass. Bioresour. Technol. 307, 123094 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 8.

    Srivastava, N. et al. Biohydrogen production via integrated sequential fermentation using magnetite nanoparticles treated crude enzyme to hydrolyze sugarcane bagasse. Int. J. Hydrog. Energy https://doi.org/10.1016/j.ijhydene.2021.08.198 (2021).

    Article 

    Google Scholar 

  • 9.

    Singh, N., Dhanya, B. S. & Verma, M. L. Nano-immobilized biocatalysts and their potential biotechnological applications in bioenergy production. Mater. Sci. Energy Technol. 3, 808–824 (2020).

    CAS 

    Google Scholar 

  • 10.

    Kumar, S. et al. Investigation of nanoparticle immobilized cellulase: nanoparticle identity, linker length and polyphenol hydrolysis. Heliyon 5, e01702 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 11.

    Dhasmana, A. et al. Titanium dioxide nanoparticles provide protection against polycyclic aromatic hydrocarbon BaP and chrysene-induced perturbation of DNA repair machinery: a computational biology approach. Biotechnol. Appl. Biochem. 63, 497–513 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 12.

    Dhasmana, A. et al. Tobacco smoke carcinogens induce DNA repair machinery function loss: protection by carbon nanotubes. Asian Pac. J. Cancer Prev. 21, 3099–3108 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 13.

    Jordan, J., Kumar, C. S. S. R. & Theegala, C. Preparation and characterization of cellulase-bound magnetite nanoparticles. J. Mol. Catal. B Enzym 68, 139–146 (2011).

    CAS 

    Google Scholar 

  • 14.

    Altaf, M., Manoharadas, S. & Zeyad, M. T. Green synthesis of cerium oxide nanoparticles using Acorus calamus extract and their antibiofilm activity against bacterial pathogens. Microsc. Res. Tech. 84, 1638–1648 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • 15.

    Suresh, K. C. et al. Green synthesis of SnO2 nanoparticles using Delonix elata leaf extract: evaluation of its structural, optical, morphological and photocatalytic properties. SN Appl. Sci. 2, 1735 (2020).

    CAS 

    Google Scholar 

  • 16.

    Selim, Y. A., Azb, M. A., Ragab, I. & Abd El-Azim, M. H. Green synthesis of zinc oxide nanoparticles using aqueous extract of deverra tortuosa and their cytotoxic activities. Sci. Rep. 10, 3445 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 17.

    Bekele, E. T., Gonfa, B. A., Zelekew, O. A., Belay, H. H. & Sabir, F. K. Synthesis of titanium oxide nanoparticles using root extract of Kniphofia foliosa as a template, characterization, and its application on drug resistance bacteria. J. Nanomater. 2020, 2817037 (2020).

    Google Scholar 

  • 18.

    Aritonang, H. F., Koleangan, H. & Wuntu, A. D. Synthesis of silver nanoparticles using aqueous extract of medicinal plants’ (Impatiens balsamina and Lantana camara) fresh leaves and analysis of antimicrobial activity. Int. J. Microbiol. 2019, 8642303 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 19.

    Rodríguez-León, E. et al. Synthesis of gold nanoparticles using mimosa tenuiflora extract, assessments of cytotoxicity, cellular uptake, and catalysis. Nanoscale Res. Lett. 14, 334 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 20.

    Bhuiyan, M. S. H. et al. Green synthesis of iron oxide nanoparticle using Carica papaya leaf extract: application for photocatalytic degradation of remazol yellow RR dye and antibacterial activity. Heliyon 6, e04603 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 21.

    Kulkarni, G. D. et al. Green synthesis of NiFe2O4 nanoparticles using different fuels and their structural characterization. J. Phys. Conf. Ser. 1644, 012003 (2020).

    CAS 

    Google Scholar 

  • 22.

    Muthukumar, H., Palanirajan, S. K., Shanmugam, M. K. & Gummadi, S. N. Plant extract mediated synthesis enhanced the functional properties of silver ferrite nanoparticles over chemical mediated synthesis. Biotechnol. Rep. 26, e00469 (2020).

    Google Scholar 

  • 23.

    Meka Chufa, B., Abdisa Gonfa, B., Yohannes Anshebo, T. & Adam, W. G. A novel and simplest green synthesis method of reduced graphene oxide using methanol extracted Vernonia Amygdalina: large-scale production. Adv. Condens. Matter Phys. 2021, 6681710 (2021).

    Google Scholar 

  • 24.

    Srivastava, N., Singh, J., Ramteke, P. W., Mishra, P. K. & Srivastava, M. Improved production of reducing sugars from rice straw using crude cellulase activated with Fe3O4/Alginate nanocomposite. Bioresour. Technol. 183, 262–266 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 25.

    Srivastava, M. et al. Bioinspired synthesis of iron-based nanomaterials for application in biofuels production: a new in-sight. Renew. Sustain. Energy Rev. 147, 111206 (2021).

    CAS 

    Google Scholar 

  • 26.

    Selvam, K. et al. Activity and stability of bacterial cellulase immobilized on magnetic nanoparticles. Chin. J. Catal. 37, 1891–1898 (2016).

    CAS 

    Google Scholar 

  • 27.

    Sadiq, H. et al. Green synthesis of ZnO nanoparticles from Syzygium Cumini leaves extract with robust photocatalysis applications. J. Mol. Liq. 335, 116567 (2021).

    CAS 

    Google Scholar 

  • 28.

    Asghar, M. A., Zahir, E., Asghar, M. A., Iqbal, J. & Rehman, A. A. Facile, one-pot biosynthesis and characterization of iron, copper and silver nanoparticles using Syzygium cumini leaf extract: as an effective antimicrobial and aflatoxin B1 adsorption agents. PLoS ONE 15, e0234964 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 29.

    Chhikara, N. et al. Bioactive compounds and pharmacological and food applications of Syzygium cumini: a review. Food Funct. 9, 6096–6115 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 30.

    Marslin, G. et al. Secondary metabolites in the green synthesis of metallic nanoparticles. Materials (Basel) 11, 940 (2018).

    ADS 

    Google Scholar 

  • 31.

    da Silva, A. C. C. et al. Xyloglucan-based hybrid nanocomposite with potential for biomedical applications. Int. J. Biol. Macromol. 168, 722–732 (2021).

    PubMed 

    Google Scholar 

  • 32.

    Zhang, L. et al. Facile synthesis of iron oxides/reduced graphene oxide composites: application for electromagnetic wave absorption at high temperature. Sci. Rep. 5, 9298 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 33.

    Sukmaningsih, A. A. S. A., Permana, S., Santjojo, D. J. D. H., Wardoyo, A. Y. P. & Sumitro, S. B. The potency of java plum (Syzgium cumini) fruit extract as free radical scavenging in cigarette smoke. AIP Conf. Proc. 2155, 020015 (2019).

    CAS 

    Google Scholar 

  • 34.

    Jebitta, S. R., Allwin, S. & Ramanathan, M. Functional group analysis of jamun (Syzygium cumini) pulp dried in cross flow dryer. Int. Res. J. Pharm. 6, 111–113 (2015).

    Google Scholar 

  • 35.

    Nag, S., Roychowdhury, A., Das, D. & Mukherjee, S. Synthesis of α-Fe2O3-functionalised graphene oxide nanocomposite by a facile low temperature method and study of its magnetic and hyperfine properties. Mater. Res. Bull. 74, 109–116 (2016).

    CAS 

    Google Scholar 

  • 36.

    Testa-Anta, M., Ramos-Docampo, M. A., Comesaña-Hermo, M., Rivas-Murias, B. & Salgueiriño, V. Raman spectroscopy to unravel the magnetic properties of iron oxide nanocrystals for bio-related applications. Nanoscale Adv. 1, 2086–2103 (2019).

    ADS 
    CAS 

    Google Scholar 

  • 37.

    Shebanova, O. N. & Lazor, P. Raman spectroscopic study of magnetite (FeFe2O4): a new assignment for the vibrational spectrum. J. Solid State Chem. 174, 424–430 (2003).

    ADS 
    CAS 

    Google Scholar 

  • 38.

    El Ghandoor, H., Zidan, H., Khalil, M. & Ismail, M. I. M. Synthesis and some physical properties of magnetite (Fe3O4) nanoparticles. Int. J. Electrochem. Sci. 7, 5734–5745 (2012).

    Google Scholar 

  • 39.

    Li, Y., Wang, Z. & Liu, R. Superparamagnetic α-Fe2O3/Fe3O4 heterogeneous nanoparticles with enhanced biocompatibility. Nanomaterials (Basel). 11, 834 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 40.

    Rufus, A., Sreeju, N. & Philip, D. Synthesis of biogenic hematite (α-Fe2O3) nanoparticles for antibacterial and nanofluid applications. RSC Adv. 6, 94206–94217 (2016).

    ADS 
    CAS 

    Google Scholar 

  • 41.

    Jayabharathi, J., Ramanathan, P., Thanikachalam, V. & Karunakaran, C. Optical and theoretical studies on Fe3O4–imidazole nanocomposite and clusters. New J. Chem. 39, 3801–3812 (2015).

    CAS 

    Google Scholar 

  • 42.

    Potprommanee, L. et al. Characterization of a thermophilic cellulase from Geobacillus sp. HTA426, an efficient cellulase-producer on alkali pretreated of lignocellulosic biomass. PLoS ONE 12, e0175004 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 43.

    Huang, W., Pan, S., Li, Y., Yu, L. & Liu, R. Immobilization and characterization of cellulase on hydroxy and aldehyde functionalized magnetic Fe2O3/Fe3O4 nanocomposites prepared via a novel rapid combustion process. Int. J. Biol. Macromol. 162, 845–852 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 44.

    Yang, G. & Wang, J. Improving mechanisms of biohydrogen production from grass using zero-valent iron nanoparticles. Bioresour. Technol. 266, 413–420 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 45.

    Khan, S. et al. Maximizing the native concentration and shelf life of protein: a multiobjective optimization to reduce aggregation. Appl. Microbiol. Biotechnol. 89, 99–108 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • 46.

    Srivastava, N. et al. Nickel ferrite nanoparticles induced improved fungal cellulase production using residual algal biomass and subsequent hydrogen production following dark fermentation. Fuel 304, 121391 (2021).

    CAS 

    Google Scholar 

  • 47.

    Vijayalakshmi, S., Govindarajan, M., Al-Mulahim, N., Ahmed, Z. & Mahboob, S. Cellulase immobilized magnetic nanoparticles for green energy production from Allamanda schottii L.: sustainability research in waste recycling. Saudi J. Biol. Sci. 28, 901–910 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • 48.

    Song, Q., Mao, Y., Wilkins, M., Segato, F. & Prade, R. Cellulase immobilization on superparamagnetic nanoparticles for reuse in cellulosic biomass conversion. AIMS Bioeng. 3, 264–276 (2016).

    CAS 

    Google Scholar 

  • 49.

    Ahmad, R. & Sardar, M. Immobilization of cellulase on TiO2 nanoparticles by physical and covalent methods: a comparative study. Indian J. Biochem. Biophys. 51, 314–320 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 50.

    Elsa Cherian, M. D. G. B. Immobilization of cellulase onto MnO2 nanoparticles for bioethanol production by enhanced hydrolysis of agricultural waste. Chin. J. Catal. 36, 1223–1229 (2015).

    Google Scholar 

  • 51.

    Bohara, R. A., Thorat, N. D. & Pawar, S. H. Immobilization of cellulase on functionalized cobalt ferrite nanoparticles. Korean J. Chem. Eng. 33, 216–222 (2016).

    CAS 

    Google Scholar 

  • 52.

    Manasa, P., Saroj, P. & Korrapati, N. Immobilization of cellulase enzyme on zinc ferrite nanoparticles in increasing enzymatic hydrolysis on ultrasound-assisted alkaline pretreated crotalaria juncea biomass. Indian J. Sci. Technol. 10, 1–7 (2017).

    CAS 

    Google Scholar 

  • 53.

    Samaratunga, A. et al. Modeling the effect of pH and temperature for cellulases immobilized on enzymogel nanoparticles. Appl. Biochem. Biotechnol. 176, 1114–1130 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 54.

    Han, J. et al. Preparation and characterization of Fe3O4-NH2@4-arm-PEG-NH2, a novel magnetic four-arm polymer-nanoparticle composite for cellulase immobilization. Biochem. Eng. J. 130, 90–98 (2018).

    CAS 

    Google Scholar 

  • 55.

    Li, Y. et al. Molecular Imprinting and immobilization of cellulase onto magnetic Fe3O4@SiO2 nanoparticles. J. Nanosci. Nanotechnol. 14, 2931–2936 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 56.

    Desai, M. P. & Pawar, K. D. Immobilization of cellulase on iron tolerant Pseudomonas stutzeri biosynthesized photocatalytically active magnetic nanoparticles for increased thermal stability. Mater. Sci. Eng. C 106, 110169 (2020).

    CAS 

    Google Scholar 

  • 57.

    Abbaszadeh, M. & Hejazi, P. Metal affinity immobilization of cellulase on Fe3O4 nanoparticles with copper as ligand for biocatalytic applications. Food Chem. 290, 47–55 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 58.

    Kumari, A. et al. Multiple thermostable enzyme hydrolases on magnetic nanoparticles: an immobilized enzyme-mediated approach to saccharification through simultaneous xylanase, cellulase and amylolytic glucanotransferase action. Int. J. Biol. Macromol. 120, 1650–1658 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 59.

    Sharma, N. et al. Preparation and evaluation of the ZnO NP-ampicillin/sulbactam nanoantibiotic: optimization of formulation variables using RSM coupled GA method and antibacterial activities. Biomolecules 9, 764 (2019).

    CAS 
    PubMed Central 

    Google Scholar 

  • 60.

    Hyeon, J. E., Shin, S. K. & Han, S. O. Design of nanoscale enzyme complexes based on various scaffolding materials for biomass conversion and immobilization. Biotechnol. J. 11, 1386–1396 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 61.

    Rai, M. et al. Strategic role of nanotechnology for production of bioethanol and biodiesel. Nanotechnol. Rev. 5, 231–250 (2016).

    CAS 

    Google Scholar 

  • 62.

    Li, L.-J., Xia, W.-J., Ma, G.-P., Chen, Y.-L. & Ma, Y.-Y. A study on the enzymatic properties and reuse of cellulase immobilized with carbon nanotubes and sodium alginate. AMB Express 9, 112 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 63.

    Ghose, T. K. Measurement of cellulase activities. Pure Appl. Chem. 59, 257–268 (1987).

    CAS 

    Google Scholar 

  • 64.

    Miller, G. L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31, 426–428 (1959).

    CAS 

    Google Scholar 

  • Source link