Preloader

Point-of-use sensors and machine learning enable low-cost determination of soil nitrogen

  • 1.

    World Population Prospects 2019 https://population.un.org/wpp/Download/Files/1_Indicators(Standard)/EXCEL_FILES/1_Population/WPP2019_POP_F01_1_TOTAL_POPULATION_BOTH_SEXES.xlsx (United Nations Department of Economic and Social Affairs, 2019).

  • 2.

    Mosheim, R. Fertilizer Use and Price https://www.ers.usda.gov/webdocs/DataFiles/50341/fertilizeruse.xls?v=5260.4 (United States Department of Agriculture—Economic Research Service, 2019).

  • 3.

    Alexandratos, N. & Bruinsma, J. World Agriculture Towards 2030/2050 http://www.fao.org/3/ap106e/ap106e.pdf (Food and Agriculture Organization of the United Nations, 2012).

  • 4.

    Tetteh, R. N. Chemical soil degradation as a result of contamination: a review. J. Soil Sci. Environ. Manage. 6, 301–308 (2015).

    CAS 
    Article 

    Google Scholar 

  • 5.

    Osman, K. T. Soil Degradation, Conservation and Remediation (Springer Netherlands, 2014); https://doi.org/10.1007/978-94-007-7590-9

  • 6.

    Beeckman, F., Motte, H. & Beeckman, T. Nitrification in agricultural soils: impact, actors and mitigation. Curr. Opin. Biotechnol. 50, 166–173 (2018).

    CAS 
    Article 

    Google Scholar 

  • 7.

    Smith, V. H., Tilman, G. D. & Nekola, J. C. Eutrophication: impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environ. Pollut. 100, 179–196 (1999).

    CAS 
    Article 

    Google Scholar 

  • 8.

    Zheng, F. et al. Mineral and organic fertilization alters the microbiome of a soil nematode Dorylaimus stagnalis and its resistome. Sci. Total Environ. 680, 70–78 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 9.

    Wang, Q. et al. Impact of 36 years of nitrogen fertilization on microbial community composition and soil carbon cycling-related enzyme activities in rhizospheres and bulk soils in northeast China. Appl. Soil Ecol. 136, 148–157 (2019).

    Article 

    Google Scholar 

  • 10.

    Zhao, Z. B. et al. Fertilization changes soil microbiome functioning, especially phagotrophic protists. Soil Biol. Biochem. 148, 107863 (2020).

    CAS 
    Article 

    Google Scholar 

  • 11.

    Rosas, F. Fertilizer Use by Crop at the Country Level (1990–2010) Working Paper No. 12-WP 535 (Center for Agricultural and Rural Development, Iowa State University, 2012); http://publications.iowa.gov/13990/1/12-WP_535.pdf

  • 12.

    Zhu, Q., Schmidt, J. P., Lin, H. S. & Sripada, R. P. Hydropedological processes and their implications for nitrogen availability to corn. Geoderma 154, 111–122 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 13.

    Shanahan, J. F., Kitchen, N. R., Raun, W. R. & Schepers, J. S. Responsive in-season nitrogen management for cereals. Comput. Electron. Agric. 61, 51–62 (2008).

    Article 

    Google Scholar 

  • 14.

    Tremblay, N. et al. Corn response to nitrogen is influenced by soil texture and weather. Agron. J. 104, 1658–1671 (2012).

    Article 

    Google Scholar 

  • 15.

    Cilia, C. et al. Nitrogen status assessment for variable rate fertilization in maize through hyperspectral imagery. Remote Sens. 6, 6549–6565 (2014).

    ADS 
    Article 

    Google Scholar 

  • 16.

    Kitchen, N. R. et al. Ground-based canopy reflectance sensing for variable-rate nitrogen corn fertilization. Agron. J. 102, 71–84 (2010).

    CAS 
    Article 

    Google Scholar 

  • 17.

    Stone, M. L. et al. Use of spectral radiance for correcting in-season fertilizer nitrogen deficiencies in winter wheat. Trans. ASABE 39, 1623–1631 (1996).

    Article 

    Google Scholar 

  • 18.

    CropSpec Crop Canopy Sensors http://topconcare.com/en/agriculture/crop-monitoring-technology/crop-canopy-sensors/ (Topcon Totalcare, 2021).

  • 19.

    SS1 SunScan Canopy Analysis System https://delta-t.co.uk/product/sunscan/ (Delta-T Devices, 2021).

  • 20.

    N-Sensor https://www.yara.co.uk/crop-nutrition/farmers-toolbox/n-sensor/ (Yara, 2021).

  • 21.

    Morellos, A. et al. Machine learning based prediction of soil total nitrogen, organic carbon and moisture content by using VIS-NIR spectroscopy. Biosyst. Eng. 152, 104–116 (2016).

    Article 

    Google Scholar 

  • 22.

    Kim, H. J., Hummel, J. W. & Birrell, S. J. Evaluation of nitrate and potassium ion-selective membranes for soil macronutrient sensing. Trans. ASABE 49, 597–606 (2006).

    CAS 
    Article 

    Google Scholar 

  • 23.

    World’s First Wireless NPK Soil Sensor (Teralytic, 2021).

  • 24.

    Shaw, R., Lark, R. M., Williams, A. P., Chadwick, D. R. & Jones, D. L. Characterising the within-field scale spatial variation of nitrogen in a grassland soil to inform the efficient design of in-situ nitrogen sensor networks for precision agriculture. Agric. Ecosyst. Environ. 230, 294–306 (2016).

    Article 

    Google Scholar 

  • 25.

    Hengl, T. et al. Soil nutrient maps of sub-Saharan Africa: assessment of soil nutrient content at 250 m spatial resolution using machine learning. Nutr. Cycl. Agroecosyst. 109, 77–102 (2017).

    CAS 
    Article 

    Google Scholar 

  • 26.

    Zaman, B. & McKee, M. Spatio-temporal prediction of root zone soil moisture using multivariate relevance vector machines. Open J. Mod. Hydrol. 4, 80–90 (2014).

    Article 

    Google Scholar 

  • 27.

    Brewster, C., Roussaki, I., Kalatzis, N., Doolin, K. & Ellis, K. IoT in agriculture: designing a Europe-wide large-scale pilot. IEEE Commun. Mag. 55, 26–33 (2017).

    Article 

    Google Scholar 

  • 28.

    Dincer, C. et al. Disposable sensors in diagnostics, food and environmental monitoring. Adv. Mater. 31, e1806739 (2019).

    Article 

    Google Scholar 

  • 29.

    Burton, R. Nitrate Sensing in the Soil https://www.cambridgeconsultants.com/insights/nitrate-sensing-in-the-soil (Cambridge Consultants, 2016).

  • 30.

    Tully, K. L. & Weil, R. Ion-selective electrode offers accurate, inexpensive method for analyzing soil solution nitrate in remote regions. Commun. Soil Sci. Plant Anal. 45, 1974–1980 (2014).

    CAS 
    Article 

    Google Scholar 

  • 31.

    Choosang, J. et al. Simultaneous detection of ammonium and nitrate in environmental samples using on ion-selective electrode and comparison with portable colorimetric assays. Sensors (Basel) 18, 3555 (2018).

    ADS 
    Article 

    Google Scholar 

  • 32.

    Shaw, R., Williams, A. P., Miller, A. & Jones, D. L. Assessing the potential for ion selective electrodes and dual wavelength UV spectroscopy as a rapid on-farm measurement of soil nitrate concentration. Agriculture 3, 327–341 (2013).

    Article 

    Google Scholar 

  • 33.

    Viscarra Rossel, R. A., Walvoort, D. J. J., McBratney, A. B., Janik, L. J. & Skjemstad, J. O. Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma 131, 59–75 (2006).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 34.

    Sinfield, J. V., Fagerman, D. & Colic, O. Evaluation of sensing technologies for on-the-go detection of macro-nutrients in cultivated soils. Comput. Electron. Agric. 70, 1–18 (2010).

    Article 

    Google Scholar 

  • 35.

    Xuejiang, W. et al. Conductometric nitrate biosensor based on methyl viologen/Nafion®/ nitrate reductase interdigitated electrodes. Talanta 69, 450–455 (2006).

    Article 

    Google Scholar 

  • 36.

    Wongchoosuk, C. et al. Electronic nose for toxic gas detection based on photostimulated core-shell nanowires. RSC Adv. 4, 35084–35088 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 37.

    Barandun, G. et al. Cellulose fibers enable near-zero-cost electrical sensing of water-soluble gases. ACS Sens. 4, 1662–1669 (2019).

    CAS 
    Article 

    Google Scholar 

  • 38.

    Grell, M. et al. Autocatalytic metallization of fabrics using Si ink, for biosensors, batteries and energy harvesting. Adv. Funct. Mater. 29, 1804798 (2018).

    Article 

    Google Scholar 

  • 39.

    Ainla, A., Hamedi, M. M., Güder, F. & Whitesides, G. M. Electrical textile valves for paper microfluidics. Adv. Mater. 29, 1702894 (2017).

    Article 

    Google Scholar 

  • 40.

    Hamedi, M. M. et al. Integrating electronics and microfluidics on paper. Adv. Mater. 28, 5054–5063 (2016).

    MathSciNet 
    CAS 
    Article 

    Google Scholar 

  • 41.

    Glavan, A. C. et al. Analytical devices based on direct synthesis of DNA on paper. Anal. Chem. 88, 725–731 (2016).

    CAS 
    Article 

    Google Scholar 

  • 42.

    Stark, J. M. & Firestone, M. K. Mechanisms for soil moisture effects on activity of nitrifying bacteria. Appl. Environ. Microbiol. 61, 218–221 (1995).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 43.

    Nguyen, L. T. T. et al. Impacts of waterlogging on soil nitrification and ammonia-oxidizing communities in farming system. Plant Soil 426, 299–311 (2018).

    CAS 
    Article 

    Google Scholar 

  • 44.

    Taylor, A. E., Giguere, A. T., Zoebelein, C. M., Myrold, D. D. & Bottomley, P. J. Modeling of soil nitrification responses to temperature reveals thermodynamic differences between ammonia-oxidizing activity of archaea and bacteria. ISME J. 11, 896–908 (2017).

    CAS 
    Article 

    Google Scholar 

  • 45.

    Hao, T. et al. Impacts of nitrogen fertilizer type and application rate on soil acidification rate under a wheat–maize double cropping system. J. Environ. Manage. 270, 110888 (2020).

    CAS 
    Article 

    Google Scholar 

  • 46.

    Smith, J. L. & Doran, J. W. in Methods for Assessing Soil Quality Vol. 49 (eds Doran, J. W. & Jones, A. J.) 169–185 (Soil Science Society of America, 1997).

  • 47.

    Rogovska, N., Laird, D. A., Chiou, C. P. & Bond, L. J. Development of field mobile soil nitrate sensor technology to facilitate precision fertilizer management. Precis. Agric. 20, 40–55 (2019).

    Article 

    Google Scholar 

  • 48.

    Ortega, L., Llorella, A., Esquivel, J. P. & Sabaté, N. Paper-based batteries as conductivity sensors for single-use applications. ACS Sens. 5, 1743–1749 (2020).

    CAS 
    Article 

    Google Scholar 

  • 49.

    Güder, F. et al. Superior functionality by design: selective ozone sensing realized by rationally constructed high-index ZnO surfaces. Small 8, 3307–3314 (2012).

    Article 

    Google Scholar 

  • 50.

    Güder, F. et al. Paper-based electrical respiration sensor. Angew. Chem. Int. Ed. 55, 5727–5732 (2016).

    Article 

    Google Scholar 

  • 51.

    Maier, D. et al. Toward continuous monitoring of breath biochemistry: a paper-based wearable sensor for real-time hydrogen peroxide measurement in simulated breath. ACS Sens. 4, 2945–2951 (2019).

    CAS 
    Article 

    Google Scholar 

  • Source link