Dyes and pigments market – growth, trends, covid-19 impact, and forecasts (2021 – 2026). https://www.mordorintelligence.com/industry-reports/dyes-and-pigments-market?gclid=Cj0KCQjw5uWGBhCTARIsAL70sLLOVQUzpBpx_6acFXmbpYQ7okD2h8qIaTaj9a0nXMeinPRP-C03hTYaAhN0EALw_wcB. Accessed on 21 July 2021.
Jabłońska, M., Stawska, J. & Czechowska, D.I. Country-specific determinants of textile industry development in Poland: comparative analysis of the years 2007 and 2017. Autex Res. J. 20(2), 186–193. https://doi.org/10.2478/aut-2019-0064 (2020).
Hajdys, D., Jabłońska, M. & Ślebocka, M. Impact of textile industry restructuring on the financial condition of local government units for the example of the Łódź region in Poland. Fibres Text. East. Eur. 5(143), 8–19. https://doi.org/10.5604/01.3001.0014.2379 (2020).
Google Scholar
Marszał, T. Łódź metropolitan area: delimitation, planning and development. Geogr. Pol. 90(3), 281–300. https://doi.org/10.7163/GPol.0096 (2017).
Google Scholar
Bibi, I., Bhatti, H. N. & Asgher, M. Decolourisation of direct dyes with manganese peroxidase from white rot Basidiomycete Ganoderma lucidum-IBL-5. Can. J. Chem. Eng. 87, 435–440. https://doi.org/10.1002/cjce.20165 (2009).
Google Scholar
Nouren, S. & Bhatti, H. N. Mechanistic study of degradation of basic violet 3 by Citrus limon peroxidase and phytotoxicity assessment of its degradation products. Biochem. Eng. J. 95, 9–19. https://doi.org/10.1016/j.bej.2014.11.021 (2015).
Google Scholar
Benkhaya, S., M’rabbet, S. & El Harfi, A. A review on classifications, recent synthesis and applications of textile a review on classifications, recent synthesis and applications of textile dyes. Inorg. Chem. Commun. 115, 107891 (2020).
Google Scholar
Długoński, A. & Dushkova, D. The hidden potential of informal urban greenspace: an example of two former landfills in post-socialist cities (central Poland). Sustainability 13, 3691. https://doi.org/10.3390/su13073691 (2021).
Google Scholar
Holkar, Ch. R., Jadhav, A. J., Pinjari, D. V., Mahamuni, N. M. & Pandit, A. B. A critical review on textile wastewater treatments : possible approaches. J. Environ. Manage. 182, 351–366. https://doi.org/10.1016/j.jenvman.2016.07.090 (2016).
Google Scholar
Jędrzejczak, K. & Wojciechowski, M. A numerical method of analyzing the composition of colored wastewater from dyeing plant. Int. J. Environ. Sci. Technol. https://doi.org/10.1007/s13762-021-03208-2 (2021).
Google Scholar
Nai, C. et al. Potentially contamination and health risk to shallow groundwater caused by closed industrial solid waste landfills: Site reclamation evaluation strategies. J. Clean. Prod. 286, 125402. https://doi.org/10.1016/j.jclepro.2020.125402 (2021).
Google Scholar
NIK Report. Hazard prevention from the landfills on the Lodz Voivodeship area. https://www.nik.gov.pl/plik/id,23253,vp,25961.pdf. Accessed on 21 July 2021.
Bibi, I. et al. Investigation of catalytic properties of Manganese Peroxidase (MnP)produced from Agaricus bisporus A21 and its potential application in the biotransformation of xenobiotic compound. J. Chem. Soc. Pak. 37(05), 859–868 (2015).
Google Scholar
Yeilagi, S., Rezapour, S. & Asadzadeh, F. Degradation of soil quality by the waste leachate in a Mediterranean semi-arid ecosystem. Sci. Rep. 11, 11390. https://doi.org/10.1038/s41598-021-90699-1 (2021).
Google Scholar
Brüschweiler, B. J. & Merlot, C. Azo dyes in clothing textiles can be cleaved into a series of mutagenic aromatic amines which are not regulated yet. Regul. Toxicol. Pharmacol. 88, 214–226. https://doi.org/10.1016/j.yrtph.2017.06.012 (2017).
Google Scholar
Özkan, B. Ç., Fırat, M., Dotse, S. & Bakırdere, S. Accurate and sensitive determination of harmful aromatic amine products of azo dyes in wastewater and textile samples by GC – MS after multivariate optimization of binary solvent dispersive liquid-liquid microextraction. Microchem. J145, 84–89. https://doi.org/10.1016/j.microc.2018.10.023 (2019).
Google Scholar
Piccinini, P., Senaldi, C. & Buriova, E. European Survey on the presence of banned azodyes in textiles. EUR 23447 EN. Luxembourg (Luxembourg): OPOCE; 2008. JRC44198. https://publications.jrc.ec.europa.eu/repository/handle/JRC44198. Accessed on 21 July 2021.
Jasińska, A., Góralczyk, A. & Długoński J. Dyes decolourisation and degradation by microorganisms in Microbial biodegradation: From omics to function and application (ed. Długoński, J.) 119–141 (Caister Academic Press: Norfolk, UK, 2016) ISBN: 978–1–910190–45–6.
Noreen, R., Asgher, M., Bhatti, H. N., Batool, S. & Asad, M. J. Phanerochaete chrysosporium IBL-03 secretes high titers of manganese peroxidase during decolorization of Drimarine Blue K2RL textile dye. Environ Technol. 32(11–12), 1239–1246. https://doi.org/10.1080/09593330.2010.534820 (2011).
Google Scholar
Islam, M. A. et al. Microbial load in bio-slurry from different biogas plants in Bangladesh. J. Adv. Vet. Anim. Res. 6(3), 376–383. https://doi.org/10.5455/javar.2019.f357 (2019).
Google Scholar
Kalsoom, U., Ashraf, S. S., Meetani, M. A., Rauf, M. A. & Bhatti, H. N. Mechanistic study of a diazo dye degradation by Soybean Peroxidase. Chem Cent J. 7(1), 93. https://doi.org/10.1186/1752-153X-7-93 (2013).
Google Scholar
Szewczyk, R. & Kowalski, K. Metabolomics and crucial enzymes in microbial degradation of contaminants in Microbial biodegradation: From omics to function and application, application (ed. Długoński, J.) 43–65 (Caister Academic Press: Norfolk, UK, 2016) ISBN: 978–1–910190–45–6.
Góralczyk-Bińkowska, A., Jasińska, A., Długoński, A., Płociński, P. & Długoński, J. Laccase activity of the ascomycete fungus Nectriella pironii and innovative strategies for its production on leaf litter of an urban park. PLoS ONE 15(4), e0231453. https://doi.org/10.1371/journal.pone.0231453 (2020).
Google Scholar
Janas, M. & Zawadzka, A. Assessment of the monitoring of an industrial waste landfill. Ecol. Chem. Eng. S. 25(4), 659–669. https://doi.org/10.1515/eces-2018-0044 (2018).
Google Scholar
Kuśmierz, A., Krawczyńska, B. & Krawczyński, J. Ocena oddziaływania składowisk pozakładowych zlokalizowanych na terenie byłych zakładów “Boruta” w Zgierzu na życie i zdrowie mieszkańców Zgierza i okolic oraz dla środowiska [Assessment of the impact of off-site landfills located in the former “Boruta” plants in Zgierz on the life and health of the inhabitants of Zgierz and the surrounding area, and on the environment], Instytut Ochrony Środowiska – Państwowy Instytut Badawczy: Warsaw, Poland 2019. (in Polish).
Rysiukiewicz K. Dokumentacja określająca warunki hydrogeologiczne w rejonie osadników gipsów i popiołów na terenie Z.P.B. “Boruta” w Zgierzu w likwidacji, pow. zgierski, woj. łódzkie [Documentation specifying the hydrogeological conditions in the area of gypsum and ash settlers at the “Boruta” Dye Production Plant in Zgierz in liquidation, Zgierz poviat, Łódź voivodeship], Narodowe Archiwum Geologiczne, PIG-PIB; 2000. (in Polish).
Szadkowska M. Dokumentacja określająca warunki hydrogeologiczne w rejonie osadników gipsów i popiołów na terenie Z.P.B. “Boruta” w Zgierzu w likwidacji, pow. zgierski, woj. łódzkie [Documentation specifying the hydrogeological conditions in the area of gypsum and ash settlers at the “Boruta” Dye Production Plant in Zgierz in liquidation, Zgierz poviat, Łódź voivodeship], Narodowe Archiwum Geologiczne, PIG-PIB; 2000. (in Polish).
Svendsen, L. M. & Gustafsson, B. 2020. Waterborne nitrogen and phosphorus inputs and water flow to the Baltic Sea 1995–2018. HELCOM Baltic Sea Environment Fact Sheet 2020. https://helcom.fi/media/documents/BSEFS-Waterborne-nitrogen-and-phosphorus-inputs-and-water-flow-to-the-Baltic-Sea.pdf. Accessed on 21 July 2021.
Regulation of the Minister of Maritime Economy and Inland Navigation of 12 July 2019 on substances particularly harmful to the aquatic environment and the conditions to be met when discharging sewage into waters or ground, as well as when discharging rainwater or meltwater into waters or into devices aquatic. Dz.U. 2019 poz. 1311. https://isap.sejm.gov.pl/isap.nsf/download.xsp/WDU20190001311/O/D20191311.pdf. Accessed on 28 June 2021 (in Polish).
Sen, S. K., Patra, P., Das, C. R., Raut, S. & Raut, S. Pilot-scale evaluation of biodecolorization and biodegradation of reactive textile wastewater: an impact on its use in irrigation of wheat crop. Water Resour. Ind. 21, 100106. https://doi.org/10.1016/j.wri.2019.100106 (2019).
Google Scholar
Różalska, S., Bernat, P., Michnicki, P. & Długoński, J. Fungal transformation of 17α-ethinylestradiol in the presence of various concentrations of sodium chloride. Int. Biodeter. Biodegr. 103, 77–84. https://doi.org/10.1016/j.ibiod.2015.04.016 (2015).
Google Scholar
Piekutin, J. Monitoring of groundwater in the area of a reclaimed municipal waste landfill. J. Ecol. Eng. 20(8), 262–268 (2019). https://doi.org/10.12911/22998993/111718
Jasim, H. H., Altahir, B. M. & Sultan, M. S. Solid cartridges in determination of benzidines in river and wastewater by HPLC. World Rural Observ. 10(1), 52–60. https://doi.org/10.7537/marswro100118.07 (2018).
Google Scholar
Mazzo, T. M., Saczk, A. A., Umbuzeiro, G. A. & Zanoni, M. V. B. Analysis of aromatic amines in surface waters receiving wastewater from a textile industry by liquid chromatographic with electrochemical detection. Anal. Lett. 39(14), 2671–2685. https://doi.org/10.1080/00032710600824797 (2006).
Google Scholar
Przygucki, T. Sto lat koloru. Zakłady Przemysłu Barwników BORUTA S.A. [100 years of colour. BORUTA S.A. Dye Industry Plant] (Publishing House Pryzmat: Łódź, Poland 1994). (in Polish).
Castillo, J. C., Orrego-Hernández, J. & Portilla, J. Cs2CO3-Promoted direct n-alkylation: highly chemoselective synthesis of n-alkylated benzylamines and anilines. Eur. J. Org. Chem. 22, 1–13. https://doi.org/10.1002/ejoc.201600549 (2014).
Google Scholar
de Lima, D. P. et al. Fungal Bioremediation of pollutant aromatic amines. Curr. Opin. Green Sustain. Chem. 11, 34–44. https://doi.org/10.1016/j.cogsc.2018.03.012 (2018).
Google Scholar
Singh, R. P., Singh, P. K. & Singh, R. L. Role of azoreductases in bacterial decolorization of azo dyes. Curr. Trends Biomed. Eng. Biosci. 9(3), 50–52. https://doi.org/10.19080/CTBEB.2017.09.555764 (2017).
Tong, Z., Yang, D., Xiao, T., Tian, Y. & Jiang, Z. Biomimetic fabrication of g-C3N4/TiO2 nanosheets with enhanced photocatalytic activity toward organic pollutant degradation. Chem. Eng. J. 260, 117–125. https://doi.org/10.1016/j.cej.2014.08.072 (2015).
Google Scholar
Barsing, P., Tiwari, A., Joshi, T. & Garg, S. Bioresource technology application of a novel bacterial consortium for mineralization of sulphonated aromatic amines. Bioresour. Technol. 2011102(2), 765–771. https://doi.org/10.1016/j.biortech.2010.08.098 (2011).
Google Scholar
Fatima, M., Saeed, M., Aslam, M., Lindström, W. R. & Farooq, R. Application of novel bacterial consortium for biodegradation of aromatic amine 2-ABS using response surface methodology. J. Microbiol Methods 174, 105941. https://doi.org/10.1016/j.mimet.2020.105941 (2019).
Google Scholar
Gunatilake, S. K. Methods of removing heavy metals from industrial wastewater. J. Multidiscip. Eng. Sci. Stud. 1, 12–18 (2015).
Anwar, F. et al. Characterization of Reactive Red-120 decolorizing bacterial strain Acinetobacter junii FA10 capable of simultaneous removal of azo dyes and hexavalent chromium. Water Air Soil Pollut. 2014225, 1–16. https://doi.org/10.1007/s11270-014-2017-7 (2017).
Google Scholar
Hussain, S. et al. Simultaneous removal of reactive dyes and hexavalent chromium by a metal tolerant Pseudomonas sp. WS-D / 183 harboring plant growth promoting traits. Int. J. Agric. Biol. 23(2), 241–252. https://doi.org/10.17957/IJAB/15.1282 (2020).
Rezapour, S., Samadi, A., Kalavrouziotis, I. K. & Ghaemian, N. Impact of the uncontrolled leakage of leachate from a municipal solidwaste landfill on soil in a cultivated-calcareous environment. Waste Manage. 82, 51–61. https://doi.org/10.1016/j.wasman.2018.10.013 (2018).
Google Scholar
Bera, S. P. & Tank, S. K. Microbial degradation of Procion Red by Pseudomonas stutzeri. Sci. Rep. 11, 3075. https://doi.org/10.1038/s41598-021-82494-9 (2021).
Google Scholar
Viswanath, B., Rajesh, B., Janardhan, A., Kumar, A. P. & Narasimha, G. Fungal laccases and their applications in bioremediation. Enzyme Res. 163242, 1–21. https://doi.org/10.1155/2014/163242 (2014).
Google Scholar
Janusz, G. et al. Laccase properties, physiological functions, and evolution. Int. J. Mol. Sci. 21, 966. https://doi.org/10.3390/ijms21030966 (2020).
Google Scholar
Piscitelli, A. et al. Induction and transcriptional regulation of laccases in fungi. Curr. Genomics 12(2), 104–112. https://doi.org/10.2174/138920211795564331 (2011).
Google Scholar
Mougin, Ch., Kollmann, A. & Jolivalt, C. Enhanced production of laccase in the fungus Trametes versicolor by the addition of xenobiotics. Biotechnol. Lett. 24, 139–142. https://doi.org/10.1023/A:1013802713266 (2002).
Google Scholar
Črešnar, B. & Petrič, Š. Cytochrome P450 enzymes in the fungal kingdom. Biochim. Biophys. Acta – Proteins Proteomics 1814(1), 29–35. https://doi.org/10.1016/j.bbapap.2010.06.020 (2011).
Google Scholar
Hussain, R., Mushtaq, A., Tabreiz, A. K. & Yusuf, A. Fungal P450 monooxygenases – the diversity in catalysis and their promising roles in biocontrol activity. Appl. Microbiol. Biotechnol. 104(3), 989–999. https://doi.org/10.1007/s00253-019-10305-3 (2019).
Google Scholar
Jasińska, A., Paraszkiewicz, K., Sip, A. & Długoński, J. Malachite Green decolorization by the filamentous fungus Myrothecium roridum – mechanistic study and process optimization. Bioresour. Technol. 194, 43–48. https://doi.org/10.1016/j.biortech.2015.07.008 (2015).
Google Scholar
Bernat, P. & Długoński, J. Degradation of tributyltin by the filamentous fungus Cunninghamella elegans, with involvement of cytochrome P-450. Biotechnol. Lett. 24(23), 1971–1974. https://doi.org/10.1023/A:1021177716010 (2002).
Google Scholar
Nykiel-Szymańska, J., Stolarek, P. & Bernat, P. Elimination and detoxification of 2,4-D by Umbelopsis isabellina with the involvement of cytochrome P450. Environ. Sci. Pollut. Res. Int. 25(3), 2738–2743. https://doi.org/10.1007/s11356-017-0571-4 (2018).
Google Scholar
Nowak, M., Soboń, A., Litwin, A. & Różalska, S. 4-n-nonylphenol degradation by the genus Metarhizium with cytochrome P450 involvement. Chemosphere 220, 324–334. https://doi.org/10.1016/j.chemosphere.2018.12.114 (2019).
Google Scholar
Nowak, M., Zawadzka, K., Szemraj, J., Góralczyk-Bińkowska, A. & Lisowska, K. Biodegradation of chloroxylenol by Cunninghamella elegans IM 1785/21GP and Trametes versicolor IM 373: Insight into Ecotoxicity and Metabolic Pathways. Int. J. Mol. Sci. 22, 4360. https://doi.org/10.3390/ijms22094360 (2021).
Google Scholar
Ning, D., Wang, H., Ding, Ch. & Lu, H. Novel evidence of cytochrome P450-catalyzed oxidation of phenanthrene in Phanerochaete chrysosporium under ligninolyticconditions. Biodegradation 21(6), 889–901. https://doi.org/10.1007/s10532-010-9349-9 (2010).
Google Scholar
Syed, K. & Yadav, J. S. P450monooxygenases (P450ome) of the model white rot fungus Phanerochaete chrysosporium. Crit. Rev. Microbiol. 38(4), 339–363. https://doi.org/10.3109/1040841X.2012.682050 (2012).
Google Scholar
Nykiel-Szymańska, J., Bernat, P. & Słaba, M. Potential of Trichoderma koningii to eliminate alachlor in the presence of copper ions. Ecotoxicol. Environ. Saf. 162, 1–9. https://doi.org/10.1016/j.ecoenv.2018.06.060 (2018).
Google Scholar
Milczarek, K., Wrońska, N. & Felczak, A. Media in Microbial biotechnology in the laboratory and in practice. Theory, exercises and specialist laboratories (ed. Długoński, J.) 475 (Łódź University Press & Jagiellonian University Press: Łódź-Kraków, Poland, 2021) e-ISBN 978–83–8220–420–9.
Paraszkiewicz, K., Bernat, P. & Długoński, J. Effect of nickel, copper, and zinc on emulsifier production and saturation of cellular fatty acids in the filamentous fungus Curvularia lunata. Int. Biodeter. Biodegr. 63(1), 100–105. https://doi.org/10.1016/j.ibiod.2008.03.015 (2009).
Google Scholar
Siewiera, P., Różalska, S. & Bernat, P. Estrogen-mediated protection of the organotin-degrading strain Metarhizium robertsii against oxidative stress promoted by monobutyltin. Chemosphere 185, 96–104. https://doi.org/10.1016/j.chemosphere.2017.06.130 (2017).
Google Scholar
PN-EN 1899–2:2002 Water Quality – Determination of Biological Oxygen Demand after n days (BODn)= Part 2: Method for undiluted samples. https://www.iso.org/obp/ui/#iso:std:iso:5815:-2:ed-1:v1:en:ed1:v1. Accessed on 21 July 2021.
Procedure PB-20, edition 1 of 06.05.2019 – Determination of temperature.
PN-EN ISO 10523:2012 – Water quality – Determination of pH. https://sklep.pkn.pl/pn-en-iso-10523-2012e.html. Accessed on 21 July 2021.
PN-EN 27888:1999 – Water quality – Determination of pH. https://infostore.saiglobal.com/en-gb/standards/pn-en-27888-1999-922966_saig_pkn_pkn_2178929/. Accessed on 21 July 2021.
PN-EN ISO 8467:2001 – Water quality – Determination of permanganate index. https://www.iso.org/standard/15669.html. Accessed on 21 July 2021.
PN-EN 1484:1999 – Water analysis – Guidelines for the determination of total organic carbon (TOC) and dissolved organic carbon (DOC). https://infostore.saiglobal.com/en-gb/standards/pn-en-1484-1999-934164_saig_pkn_pkn_2201325/. Accessed on 21 July 2021.
PN-EN ISO 13395:2001 – Water quality – Determination of orthophosphate and total phosphorus contents by flow analysis (FIA and CFA) — Part 1: Method by flow injection analysis (FIA). https://www.iso.org/standard/35050.html. Accessed on 21 July 2021.
PN-EN ISO 10304–1:2009+AC:2012 – Water quality – Determination of dissolved anions by liquid chromatography of ions – Part 1: Determination of bromide, chloride, fluoride, nitrate, nitrite, phosphate and sulphate. https://standards.iteh.ai/catalog/standards/cen/b9f31761-ea7c-49b2-ba7d-29ea4ebca97c/en-iso-10304-1-2009-ac-2012. Accessed on 21 July 2021.
PN-EN ISO 11885:2009 – Water quality – Determination of selected elements by inductively coupled plasma optical emission spectrometry (ICP-OES). https://www.iso.org/obp/ui/#iso:std:iso:11885:ed-2:v1:en. Accessed on 21 July 2021.
EPA Method 7473 02.2007 – Mercury in Solids and Solutions by Thermal Decomposition, Amalgamation, and Atomic Absorption Spectrophotometry. https://www.epa.gov/sites/default/files/2015-12/documents/7473.pdf. Accessed on 21 July 2021.
PN-EN ISO 14403–2:2012 – Water quality – Determination of total cyanide and free cyanide using flow analysis (FIA and CFA) — Part 2: Method using continuous flow analysis (CFA). https://www.iso.org/obp/ui/#iso:std:iso:14403:-2:ed-1:v1:en. Accessed on 21 July 2021.
PN-EN ISO 9377–2:2003 – Water quality – Determination of hydrocarbon oil index — Part 2: Method using solvent extraction and gas chromatography. https://www.iso.org/obp/ui/#iso:std:iso:9377:-2:ed-1:v1:en. Accessed on 21 July 2021.
PN-EN ISO 14402:2004 – Water quality – Determination of phenol index by flow analysis (FIA and CFA). https://www.iso.org/obp/ui/#iso:std:iso:14402:ed-1:v1:en:en. Accessed on 21 July 2021.
Jasińska, A., Góralczyk-Bińkowska, A. & Długoński A. Characteristics and use of ligninolytic enzymes produced by fungi in environmental protection, industry and medicine in Microbial biotechnology in the laboratory and in practice. Theory, exercises and specialist laboratories (ed. Długoński, J.) 391–398 (Łódź University Press & Jagiellonian University Press: Łódź-Kraków, Poland, 2021) e-ISBN 978–83–8220–420–9.
Jasińska, A. & Góralczyk-Bińkowska A. Dyes in Microbial biotechnology in the laboratory and in practice. Theory, exercises and specialist laboratories (ed. Długoński, J.) 357–361 (Łódź University Press & Jagiellonian University Press: Łódź-Kraków, Poland, 2021) e-ISBN 978–83–8220–420–9.
Pueffel, C., Haase, D. & Priess, J.A. Mapping ecosystem services on brownfields in Leipzig, Germany. Ecosyst. Serv. 30, A, 73–85. https://doi.org/10.1016/j.ecoser.2018.01.011 (2018).
Długoński, A. & Szumański, M. Atlas Ekourbanistyczny Zielonej Infrastruktury Miasta Łodzi. Tom, I. Tereny Zieleni. Część, A. Parki Strefy Śródmiejskiej; [Eco-Urban Atlas of Green Infrastructure. Vol. 1a. Green Areas of Downtown], Łódzkie Towarzystwo Naukowe: Łódź, Poland, 2016. (in Polish, with English Summary).

