Preloader

Human adipose-derived stromal/stem cells expressing doublecortin improve cartilage repair in rabbits and monkeys

  • 1.

    C. Centers for Disease, Prevention. Prevalence and most common causes of disability among adults—United States, 2005. MMWR Morb. Mortal. Wkly. Rep. 58, 421–426 (2009).

  • 2.

    Anderson, D. D. et al. Post-traumatic osteoarthritis: improved understanding and opportunities for early intervention. J. Orthop. Res. 29, 802–809 (2011).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 3.

    Riedl, M., Vadala, G., Papalia, R. & Denaro, V. Three-dimensional, scaffold-free, autologous chondrocyte transplantation: a systematic review. Orthop. J. Sports Med. 8, 2325967120951152 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 4.

    Tyyni, A. & Karlsson, J. Biological treatment of joint cartilage damage. Scand. J. Med. Sci. Sports 10, 249–265 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • 5.

    Freitag, J. et al. Adipose-derived mesenchymal stem cell therapy in the treatment of knee osteoarthritis: a randomized controlled trial. Regen. Med. 14, 213–230 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 6.

    Johnson, K. A. Mesenchymal stem cell treatment of osteoarthritis. Vet. Comp. Orthop. Traumatol. 32, v (2019).

    PubMed 

    Google Scholar 

  • 7.

    Horesh, D. et al. Doublecortin, a stabilizer of microtubules. Hum. Mol. Genet. 8, 1599–1610 (1999).

    CAS 
    PubMed 

    Google Scholar 

  • 8.

    Bai, J. et al. RNAi reveals doublecortin is required for radial migration in rat neocortex. Nat. Neurosci. 6, 1277–1283 (2003).

    CAS 
    PubMed 

    Google Scholar 

  • 9.

    Gleeson, J. G. et al. Doublecortin, a brain-specific gene mutated in human X-linked lissencephaly and double cortex syndrome, encodes a putative signaling protein. Cell 92, 63–72 (1998).

    CAS 
    PubMed 

    Google Scholar 

  • 10.

    des Portes, V. et al. Doublecortin is the major gene causing X-linked subcortical laminar heterotopia (SCLH). Hum. Mol. Genet. 7, 1063–1070 (1998).

    CAS 
    PubMed 

    Google Scholar 

  • 11.

    Zhang, Y. et al. Doublecortin is expressed in articular chondrocytes. Biochem. Biophys. Res. Commun. 363, 694–700 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • 12.

    Zhang, Q. et al. Expression of doublecortin reveals articular chondrocyte lineage in mouse embryonic limbs. Genesis 49, 75–82 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • 13.

    Yamagami, T., Molotkov, A. & Zhou, C. J. Canonical Wnt signaling activity during synovial joint development. J. Mol. Histol. 40, 311–316 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • 14.

    Craft, A. M. et al. Specification of chondrocytes and cartilage tissues from embryonic stem cells. Development 140, 2597–2610 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 15.

    Craft, A. M. et al. Generation of articular chondrocytes from human pluripotent stem cells. Nat. Biotechnol. 33, 638–645 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 16.

    Deshmukh, V. et al. A small-molecule inhibitor of the Wnt pathway (SM04690) as a potential disease modifying agent for the treatment of osteoarthritis of the knee. Osteoarthritis Cartilage 26, 18–27 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 17.

    Castelucci, B. G. et al. Time-dependent regulation of morphological changes and cartilage differentiation markers in the mouse pubic symphysis during pregnancy and postpartum recovery. PLoS ONE 13, e0195304 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 18.

    Decker, R. S. et al. Cell origin, volume and arrangement are drivers of articular cartilage formation, morphogenesis and response to injury in mouse limbs. Dev. Biol. 426, 56–68 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 19.

    Lee, J. Y. et al. Pre-transplantational control of the post-transplantational fate of human pluripotent stem cell-derived cartilage. Stem Cell Rep. 11, 440–453 (2018).

    Google Scholar 

  • 20.

    Pitsillides, A. A. & Beier, F. Cartilage biology in osteoarthritis-lessons from developmental biology. Nat. Rev. Rheumatol. 7, 654–663 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • 21.

    Decker, R. S., Koyama, E. & Pacifici, M. Articular cartilage: structural and developmental intricacies and questions. Curr. Osteoporos. Rep. 13, 407–414 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 22.

    Akiyama, H. et al. Osteo-chondroprogenitor cells are derived from Sox9 expressing precursors. Proc. Natl Acad. Sci. USA 102, 14665–14670 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • 23.

    Ge, D. et al. Doublecortin may play a role in defining chondrocyte phenotype. Int. J. Mol. Sci. 15, 6941–6960 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 24.

    Klatt, A. R., Paulsson, M. & Wagener, R. Expression of matrilins during maturation of mouse skeletal tissues. Matrix Biol. 21, 289–296 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • 25.

    Segat, D. et al. Expression of matrilin-1, -2 and -3 in developing mouse limbs and heart. Matrix Biol. 19, 649–655 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • 26.

    Yu, G. et al. Yield and characterization of subcutaneous human adipose-derived stem cells by flow cytometric and adipogenic mRNA analyzes. Cytotherapy 12, 538–546 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 27.

    Bae, H. C. et al. Hypoxic condition enhances chondrogenesis in synovium-derived mesenchymal stem cells. Biomater. Res. 22, 28 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 28.

    Lee, H. H. et al. Hypoxia enhances chondrogenesis and prevents terminal differentiation through PI3K/Akt/FoxO dependent anti-apoptotic effect. Sci. Rep. 3, 2683 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 29.

    Munir, S. et al. Hypoxia enhances chondrogenic differentiation of human adipose tissue-derived stromal cells in scaffold-free and scaffold systems. Cell Tissue Res. 355, 89–102 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 30.

    van den Borne, M. P. et al. International Cartilage Repair Society (ICRS) and Oswestry macroscopic cartilage evaluation scores validated for use in Autologous Chondrocyte Implantation (ACI) and microfracture. Osteoarthritis Cartilage 15, 1397–1402 (2007).

    PubMed 

    Google Scholar 

  • 31.

    Koh, Y. G., Choi, Y. J., Kwon, O. R. & Kim, Y. S. Second-look arthroscopic evaluation of cartilage lesions after mesenchymal stem cell implantation in osteoarthritic knees. Am. J. Sports Med. 42, 1628–1637 (2014).

    PubMed 

    Google Scholar 

  • 32.

    Li, L. et al. Mesenchymal stem cells in combination with hyaluronic acid for articular cartilage defects. Sci. Rep. 8, 9900 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 33.

    Mainil-Varlet, P. et al. Histological assessment of cartilage repair: a report by the Histology Endpoint Committee of the International Cartilage Repair Society (ICRS). J. Bone Jt. Surg. Am. 85-A(Suppl. 2), 45–57 (2003).

    Google Scholar 

  • 34.

    Ma, A. et al. Reconstruction of cartilage with clonal mesenchymal stem cell-acellular dermal matrix in cartilage defect model in nonhuman primates. Int. Immunopharmacol. 16, 399–408 (2013).

    PubMed 

    Google Scholar 

  • 35.

    Allard, J. et al. Immunohistochemical toolkit for tracking and quantifying xenotransplanted human stem cells. Regen. Med. 9, 437–452 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 36.

    Ahn, J. et al. Transplantation of human Wharton’s jelly-derived mesenchymal stem cells highly expressing TGFbeta receptors in a rabbit model of disc degeneration. Stem Cell. Res. Ther. 6, 190 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 37.

    Koyama, E. et al. A distinct cohort of progenitor cells participates in synovial joint and articular cartilage formation during mouse limb skeletogenesis. Dev. Biol. 316, 62–73 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 38.

    Hartmann, C. & Tabin, C. J. Wnt-14 plays a pivotal role in inducing synovial joint formation in the developing appendicular skeleton. Cell 104, 341–351 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • 39.

    Archer, C. W., Dowthwaite, G. P. & Francis-West, P. Development of synovial joints. Birth Defects Res. C Embryo Today 69, 144–155 (2003).

    CAS 
    PubMed 

    Google Scholar 

  • 40.

    Pacifici, M. et al. Cellular and molecular mechanisms of synovial joint and articular cartilage formation. Ann. NY Acad. Sci. 1068, 74–86 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • 41.

    DeLise, A. M., Fischer, L. & Tuan, R. S. Cellular interactions and signaling in cartilage development. Osteoarthritis Cartilage 8, 309–334 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • 42.

    Hyde, G., Dover, S., Aszodi, A., Wallis, G. A. & Boot-Handford, R. P. Lineage tracing using matrilin-1 gene expression reveals that articular chondrocytes exist as the joint interzone forms. Dev. Biol. 304, 825–833 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 43.

    Yamane, S., Cheng, E., You, Z. & Reddi, A. H. Gene expression profiling of mouse articular and growth plate cartilage. Tissue Eng. 13, 2163–2173 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • 44.

    Holtzer, H., Abbott, J., Lash, J. & Holtzer, S. The loss of phenotypic traits by differentiated cells in vitro, I. Dedifferentiation of cartilage cells. Proc. Natl Acad. Sci. USA 46, 1533–1542 (1960).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 45.

    Ahrens, P. B., Solursh, M. & Reiter, R. S. Stage-related capacity for limb chondrogenesis in cell culture. Dev. Biol. 60, 69–82 (1977).

    CAS 
    PubMed 

    Google Scholar 

  • 46.

    Tuan, R. S. Stemming cartilage degeneration: adult mesenchymal stem cells as a cell source for articular cartilage tissue engineering. Arthritis Rheum. 54, 3075–3078 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • 47.

    Smith, B., Sigal, I. R. & Grande, D. A. Immunology and cartilage regeneration. Immunol. Res. 63, 181–186 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 48.

    Adkisson, H. D. et al. Immune evasion by neocartilage-derived chondrocytes: implications for biologic repair of joint articular cartilage. Stem Cell Res. 4, 57–68 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • 49.

    Robinson, D., Guetsky, M., Halperin, R., Schneider, D. & Nevo, Z. Articular cartilage reconstruction using xenogeneic epiphyses slices. Cell Tissue Bank 3, 269–277 (2002).

    PubMed 

    Google Scholar 

  • 50.

    Nogami, M. et al. Isolation and characterization of human amniotic mesenchymal stem cells and their chondrogenic differentiation. Transplantation 93, 1221–1228 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • 51.

    Jang, K. M., Lee, J. H., Park, C. M., Song, H. R. & Wang, J. H. Xenotransplantation of human mesenchymal stem cells for repair of osteochondral defects in rabbits using osteochondral biphasic composite constructs. Knee Surg. Sports Traumatol. Arthrosc. 22, 1434–1444 (2014).

    PubMed 

    Google Scholar 

  • 52.

    Li, W. J. et al. Evaluation of articular cartilage repair using biodegradable nanofibrous scaffolds in a swine model: a pilot study. J. Tissue Eng. Regen. Med. 3, 1–10 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 53.

    Sato, M. et al. Direct transplantation of mesenchymal stem cells into the knee joints of Hartley strain guinea pigs with spontaneous osteoarthritis. Arthritis Res. Ther. 14, R31 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 54.

    Wei, X. & Messner, K. Maturation-dependent durability of spontaneous cartilage repair in rabbit knee joint. J. Biomed. Mater. Res. 46, 539–548 (1999).

    CAS 
    PubMed 

    Google Scholar 

  • 55.

    Bekkers, J. E. et al. Single-stage cell-based cartilage regeneration using a combination of chondrons and mesenchymal stromal cells: comparison with microfracture. Am. J. Sports Med. 41, 2158–2166 (2013).

    PubMed 

    Google Scholar 

  • 56.

    de Windt, T. S. et al. Allogeneic mesenchymal stem cells stimulate cartilage regeneration and are safe for single-stage cartilage repair in humans upon mixture with recycled autologous chondrons. Stem Cells 35, 256–264 (2017).

    PubMed 

    Google Scholar 

  • 57.

    de Windt, T. S. et al. Allogeneic MSCs and recycled autologous chondrons mixed in a one-stage cartilage cell transplantion: a first-in-man trial in 35 patients. Stem Cells 35, 1984–1993 (2017).

    PubMed 

    Google Scholar 

  • 58.

    Saris, T. F. F. et al. Five-year outcome of 1-stage cell-based cartilage repair using recycled autologous chondrons and allogenic mesenchymal stromal cells: a first-in-human clinical trial. J. Sports Med. 49, 941–947 (2021).

    Google Scholar 

  • 59.

    Coleman, C. M. & Tuan, R. S. Functional role of growth/differentiation factor 5 in chondrogenesis of limb mesenchymal cells. Mech. Dev. 120, 823–836 (2003).

    CAS 
    PubMed 

    Google Scholar 

  • 60.

    Sun, Y., You, Y., Jiang, W., Zhai, Z. & Dai, K. 3D-bioprinting a genetically inspired cartilage scaffold with GDF5-conjugated BMSC-laden hydrogel and polymer for cartilage repair. Theranostics 9, 6949–6961 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 61.

    Ahmad, J., Eaves, F. F. 3rd, Rohrich, R. J. & Kenkel, J. M. The American Society for Aesthetic Plastic Surgery (ASAPS) survey: current trends in liposuction. Aesthet. Surg. J. 31, 214–224 (2011).

    PubMed 

    Google Scholar 

  • 62.

    Christensen, B. B. et al. Particulated cartilage for chondral and osteochondral repair: a review. Cartilage https://doi.org/10.1177/1947603520904757 (2020).

  • 63.

    de Mulder, E. L., Hannink, G., van Kuppevelt, T. H., Daamen, W. F. & Buma, P. Similar hyaline-like cartilage repair of osteochondral defects in rabbits using isotropic and anisotropic collagen scaffolds. Tissue Eng. Part A 20, 635–645 (2014).

    PubMed 

    Google Scholar 

  • 64.

    Tay, L. X. et al. Treatment outcomes of alginate-embedded allogenic mesenchymal stem cells versus autologous chondrocytes for the repair of focal articular cartilage defects in a rabbit model. Am. J. Sports Med. 40, 83–90 (2012).

    PubMed 

    Google Scholar 

  • 65.

    Ramallal, M. et al. Xeno-implantation of pig chondrocytes into rabbit to treat localized articular cartilage defects: an animal model. Wound Repair Regen. 12, 337–345 (2004).

    PubMed 

    Google Scholar 

  • 66.

    Hattori, S., Oxford, C. & Reddi, A. H. Identification of superficial zone articular chondrocyte stem/progenitor cells. Biochem. Biophys. Res. Commun. 358, 99–103 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 67.

    Danso, E. K., Julkunen, P. & Korhonen, R. K. Poisson’s ratio of bovine meniscus determined combining unconfined and confined compression. J. Biomech. 77, 233–237 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 68.

    Fortin, M., Soulhat, J., Shirazi-Adl, A., Hunziker, E. B. & Buschmann, M. D. Unconfined compression of articular cartilage: nonlinear behavior and comparison with a fibril-reinforced biphasic model. J. Biomech. Eng. 122, 189–195 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • 69.

    Korhonen, R. K. et al. Comparison of the equilibrium response of articular cartilage in unconfined compression, confined compression and indentation. J. Biomech. 35, 903–909 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • 70.

    Li, L. P., Herzog, W., Korhonen, R. K. & Jurvelin, J. S. The role of viscoelasticity of collagen fibers in articular cartilage: axial tension versus compression. Med. Eng. Phys. 27, 51–57 (2005).

    PubMed 

    Google Scholar 

  • 71.

    Wu, Y. et al. Viscoelastic shear properties of porcine temporomandibular joint disc. Orthod. Craniofac. Res. 18, 156–163 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 72.

    Treppo, S. et al. Comparison of biomechanical and biochemical properties of cartilage from human knee and ankle pairs. J. Orthop. Res. 18, 739–748 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • Source link