Preloader

Genetically encoded photo-switchable molecular sensors for optoacoustic and super-resolution imaging

  • 1.

    Eggeling, C., Willig, K. I., Sahl, S. J. & Hell, S. W. Lens-based fluorescence nanoscopy. Q. Rev. Biophys. 48, 178–243 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 2.

    Grotjohann, T. et al. Diffraction-unlimited all-optical imaging and writing with a photochromic GFP. Nature 478, 204–208 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • 3.

    Marriott, G. et al. Optical lock-in detection imaging microscopy for contrast-enhanced imaging in living cells. Proc. Natl Acad. Sci. USA 105, 17789–17794 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 4.

    Quérard, J. et al. Resonant out-of-phase fluorescence microscopy and remote imaging overcome spectral limitations. Nat. Commun. 8, 969 (2017).

  • 5.

    Yao, J. et al. Reversibly switchable fluorescence microscopy with enhanced resolution and image contrast. J. Biomed. Opt. 19, 086018 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 6.

    Vettenburg, T., Corral, A., Rodríguez-Pulido, A., Flors, C. & Ripoll, J. Photoswitching-enabled contrast enhancement in light sheet fluorescence microscopy. ACS Photonics 4, 424–428 (2017).

    CAS 

    Google Scholar 

  • 7.

    Kao, Y.-T., Zhu, X., Xu, F. & Min, W. Focal switching of photochromic fluorescent proteins enables multiphoton microscopy with superior image contrast. Biomed. Opt. Express 3, 1955–1963 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 8.

    Stiel, A. C. et al. High-contrast imaging of reversibly switchable fluorescent proteins via temporally unmixed multispectral optoacoustic tomography. Opt. Lett. 40, 367–370 (2015).

    Google Scholar 

  • 9.

    Yao, J. et al. Multiscale photoacoustic tomography using reversibly switchable bacterial phytochrome as a near-infrared photochromic probe. Nat. Methods 13, 67–73 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 10.

    Chee, R. K. W., Li, Y., Zhang, W., Campbell, R. E. & Zemp, R. J. In vivo photoacoustic difference-spectra imaging of bacteria using photoswitchable chromoproteins. J. Biomed. Opt. 23, 106006 (2018).

    Google Scholar 

  • 11.

    Märk, J. et al. Dual-wavelength 3D photoacoustic imaging of mammalian cells using a photoswitchable phytochrome reporter protein. Commun. Phys. 1, 3 (2018).

    Google Scholar 

  • 12.

    Li, L. et al. Small near-infrared photochromic protein for photoacoustic multi-contrast imaging and detection of protein interactions in vivo. Nat. Commun. 9, 2734 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 13.

    Mishra, K. et al. Multiplexed whole-animal imaging with reversibly switchable optoacoustic proteins. Sci. Adv. 6, eaaz6293 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 14.

    Mishra, K., Fuenzalida-Werner, J. P. J. P., Ntziachristos, V. & Stiel, A. C. Photocontrollable proteins for optoacoustic imaging. Anal. Chem. 91, 5470–5477 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 15.

    Ni, Q., Mehta, S. & Zhang, J. Live-cell imaging of cell signaling using genetically encoded fluorescent reporters. FEBS J. 285, 203–219 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 16.

    Zhao, Y. et al. An expanded palette of genetically encoded Ca2+ indicators. Science 333, 1888–1891 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 17.

    Rose, T., Goltstein, P. M., Portugues, R. & Griesbeck, O. Putting a finishing touch on GECIs. Front. Mol. Neurosci. 7, 88 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 18.

    Platisa, J. & Pieribone, V. A. Genetically encoded fluorescent voltage indicators: are we there yet? Curr. Opin. Neurobiol. 50, 146–153 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 19.

    Martynov, V. I., Pakhomov, A. A., Deyev, I. E. & Petrenko, A. G. Genetically encoded fluorescent indicators for live cell pH imaging. Biochim. Biophys. Acta, Gen. Subj. 1862, 2924–2939 (2018).

    CAS 

    Google Scholar 

  • 20.

    Neef, J. et al. Quantitative optical nanophysiology of Ca2+ signaling at inner hair cell active zones. Nat. Commun. 9, 290 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 21.

    Mishina, N. M. et al. Live-cell STED microscopy with genetically encoded biosensor. Nano Lett. 15, 2928–2932 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 22.

    Mo, G. C. H. et al. Genetically encoded biosensors for visualizing live-cell biochemical activity at super-resolution. Nat. Methods 14, 427–434 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 23.

    Serulle, Y., Sugimori, M. & Llinas, R. R. Imaging synaptosomal calcium concentration microdomains and vesicle fusion by using total internal reflection fluorescent microscopy. Proc. Natl Acad. Sci. USA 104, 1697–1702 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 24.

    Gottschalk, S. et al. Rapid volumetric optoacoustic imaging of neural dynamics across the mouse brain. Nat. Biomed. Eng. 3, 392–401 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 25.

    Qian, Y. et al. A genetically encoded near-infrared fluorescent calcium ion indicator. Nat. Methods 16, 171–174 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 26.

    Subach, O. M., Barykina, N. V., Anokhin, K. V., Piatkevich, K. D. & Subach, F. V. Near-infrared genetically encoded positive calcium indicator based on gaf-fp bacterial phytochrome. Int. J. Mol. Sci. 20, E3488 (2019).

    PubMed 

    Google Scholar 

  • 27.

    Shemetov, A. A. et al. Bright near-infrared genetically encoded calcium indicator for in vivo imaging. Nat. Biotechnol. 39, 368–377 (2021).

  • 28.

    Akerboom, J. et al. Optimization of a GCaMP calcium indicator for neural activity imaging. J. Neurosci. 32, 13819–13840 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 29.

    Grotjohann, T. et al. rsEGFP2 enables fast RESOLFT nanoscopy of living cells. eLife 1, e00248 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 30.

    Henderson, M. J. et al. A low affinity GCaMP3 variant (GCaMPer) for imaging the endoplasmic reticulum calcium store. PLoS ONE 10, e0139273 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 31.

    de Juan-Sanz, J. et al. Axonal endoplasmic reticulum Ca2+ content controls release probability in CNS nerve terminals. Neuron 93, 867–881 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 32.

    Akerboom, J. et al. Crystal structures of the GCaMP calcium sensor reveal the mechanism of fluorescence signal change and aid rational design. J. Biol. Chem. 284, 6455–6464 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 33.

    Chen, Y. et al. Structural insight into enhanced calcium indicator GCaMP3 and GCaMPJ to promote further improvement. Protein Cell 4, 299–309 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 34.

    Smyrnova, D., Zinovjev, K., Tunón, I. & Ceulemans, A. Thermal isomerization mechanism in Dronpa and its mutants. J. Phys. Chem. B 120, 12820–12825 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 35.

    Liu, R. S. H. Photoisomerization by hula-twist: a fundamental supramolecular photochemical reaction. Acc. Chem. Res. 34, 555–562 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • 36.

    Chang, J., Romei, M. G. & Boxer, S. G. Structural evidence of photoisomerization pathways in fluorescent proteins. J. Am. Chem. Soc. 141, 15504–15508 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 37.

    Kao, Y.-T. T., Zhu, X. & Min, W. Protein-flexibility mediated coupling between photoswitching kinetics and surrounding viscosity of a photochromic fluorescent protein. Proc. Natl Acad. Sci. USA 109, 3220–3225 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 38.

    Coquelle, N. et al. Chromophore twisting in the excited state of a photoswitchable fluorescent protein captured by time-resolved serial femtosecond crystallography. Nat. Chem. 10, 31–37 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 39.

    Woodhouse, J. et al. Photoswitching mechanism of a fluorescent protein revealed by time-resolved crystallography and transient absorption spectroscopy. Nat. Commun. 11, 741 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 40.

    Dreier, J. et al. Smart scanning for low-illumination and fast RESOLFT nanoscopy in vivo. Nat. Commun. 10, 556 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 41.

    Masullo, L. A. et al. Enhanced photon collection enables four dimensional fluorescence nanoscopy of living systems. Nat. Commun., https://doi.org/10.1038/s41467-018-05799-w (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 42.

    Bagur, R. & Hajnóczky, G. Intracellular Ca2+ sensing: its role in calcium homeostasis and signaling. Mol. Cell 66, 780–788 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 43.

    Vetschera, P. et al. Characterization of reversibly switchable fluorescent proteins in optoacoustic imaging. Anal. Chem. 90, 10527–10535 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 44.

    Marvin, J. S., Schreiter, E. R., Echevarría, I. M. & Looger, L. L. A genetically encoded, high-signal-to-noise maltose sensor. Proteins 79, 3025–3036 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 45.

    Patriarchi, T. et al. Ultrafast neuronal imaging of dopamine dynamics with designed genetically encoded sensors. Science 360, eaat4422 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 46.

    Zhou, X. X., Chung, H. K., Lam, A. J. & Lin, M. Z. Optical control of protein activity by fluorescent protein domains. Science 338, 810–814 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 47.

    Fosque, B. F. et al. Neural circuits. Labeling of active neural circuits in vivo with designed calcium integrators. Science 347, 755–760 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 48.

    Ai, M. et al. Green-to-red photoconversion of GCaMP. PLoS ONE 10, e0138127 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 49.

    Berlin, S. et al. Photoactivatable genetically encoded calcium indicators for targeted neuronal imaging. Nat. Methods 12, 852–858 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 50.

    Sha, F., Abdelfattah, A. S., Patel, R. & Schreiter, E. R. Erasable labeling of neuronal activity using a reversible calcium marker. eLife 9, e57249 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 51.

    Medina, D. L. L. et al. Lysosomal calcium signalling regulates autophagy through calcineurin and TFEB. Nat. Cell Biol. 17, 288–299 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 52.

    Quintana, A. et al. Calcium microdomains at the immunological synapse: how ORAI channels, mitochondria and calcium pumps generate local calcium signals for efficient T-cell activation. EMBO J. 30, 3895–3912 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 53.

    Filadi, R., Theurey, P. & Pizzo, P. The endoplasmic reticulum-mitochondria coupling in health and disease: molecules, functions and significance. Cell Calcium 62, 1–15 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 54.

    Kennedy, H. J. et al. Glucose generates sub-plasma membrane ATP microdomains in single islet beta-cells. Potential role for strategically located mitochondria. J. Biol. Chem. 274, 13281–13291 (1999).

    CAS 
    PubMed 

    Google Scholar 

  • 55.

    Maman, S. & Witz, I. P. A history of exploring cancer in context. Nat. Rev. Cancer 18, 359–376 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 56.

    Payen, V. L., Mina, E., Van Hée, V. F., Porporato, P. E. & Sonveaux, P. Monocarboxylate transporters in cancer. Mol. Metab. 33, 48–66 (2019).

  • 57.

    O’Sullivan, D., Sanin, D. E., Pearce, E. J. & Pearce, E. L. Metabolic interventions in the immune response to cancer. Nat. Rev. Immunol. 19, 324–335 (2019).

    PubMed 

    Google Scholar 

  • 58.

    Damenti, M., Coceano, G., Pennacchietti, F., Bodén, A. & Testa, I. STED and parallelized RESOLFT optical nanoscopy of the tubular endoplasmic reticulum and its mitochondrial contacts in neuronal cells. Neurobiol. Dis. 155, 105361 (2021).

  • 59.

    Pédelacq, J.-D., Cabantous, S., Tran, T., Terwilliger, T. C. & Waldo, G. S. Engineering and characterization of a superfolder green fluorescent protein. Nat. Biotechnol. 24, 79–88 (2006).

    PubMed 

    Google Scholar 

  • 60.

    Moreno, X., Al-Kadhimi, S., Alvelid, J., Bodén, A. & Testa, I. ImSwitch: generalizing microscope control in Python. J. Open Source Softw. 6, 3394 (2021).

    Google Scholar 

  • 61.

    Beckers, D., Urbancic, D. & Sezgin, E. Impact of nanoscale hindrances on the relationship between lipid packing and diffusion in model membranes. J. Phys. Chem. B 124, 1487–1494 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 62.

    Fuenzalida Werner, J. P. et al. Challenging a preconception: optoacoustic spectrum differs from the optical absorption spectrum of proteins and dyes for molecular imaging. Anal. Chem. 92, 10717–10724 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 63.

    Rosenthal, A., Razansky, D. & Ntziachristos, V. Fast semi-analytical model-based acoustic inversion for quantitative optoacoustic tomography. IEEE Trans. Med. Imaging 29, 1275–1285 (2010).

    PubMed 

    Google Scholar 

  • 64.

    Schwarz, M., Buehler, A., Aguirre, J. & Ntziachristos, V. Three-dimensional multispectral optoacoustic mesoscopy reveals melanin and blood oxygenation in human skin in vivo. J. Biophotonics 9, 55–60 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 65.

    Omar, M., Gateau, J. & Ntziachristos, V. Raster-scan optoacoustic mesoscopy in the 25–125 MHz range. Opt. Lett. 38, 2472–2474 (2013).

    PubMed 

    Google Scholar 

  • 66.

    Helassa, N. et al. Fast-response Calmodulin-based fluorescent indicators reveal rapid intracellular calcium dynamics. Sci. Rep. 5, 15978 (2015).

  • 67.

    Helassa, N., Podor, B., Fine, A. & Török, K. Design and mechanistic insight into ultrafast calcium indicators for monitoring intracellular calcium dynamics. Sci. Rep. 6, 38276 (2016).

  • 68.

    Wu, J. et al. Red fluorescent genetically encoded Ca2+ indicators for use in mitochondria and endoplasmic reticulum. Biochem. J. 464, 13–22 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 69.

    Gee, J. M. et al. Imaging activity in neurons and glia with a Polr2a-based and Cre-dependent GCaMP5G-IRES-tdTomato reporter mouse. Neuron 83, 1058–1072 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Source link