Singh, A. K. & Kamal, S. Chemical control of wilt in tomato (Lycopersicon esculentum L.). Int. J. Hortic. 2, 5–6. https://doi.org/10.5376/ijh.2012.02.0002 (2012).
Google Scholar
Jiang, X., Qiao, F., Long, Y., Cong, H. & Sun, H. MicroRNA-like RNAs in plant pathogenic fungus Fusarium oxysporum f. sp. niveum are involved in toxin gene expression fine tuning. 3 Biotech 7, 354. https://doi.org/10.1007/s13205-017-0951-y (2017).
Google Scholar
Li, Y. T., Hwang, S. G., Huang, Y. M. & Huang, C. H. Effects of Trichoderma asperellum on nutrient uptake and Fusarium wilt of tomato. Crop Prot. 110, 275–282. https://doi.org/10.1016/j.cropro.2017.03.021 (2018).
Google Scholar
Muslim, A., Horinouchi, H., & Hyakumachi, M. Biological control of Fusarium wilt of tomato [Lycopersicon esculentum] with hypovirulent binucleate Rhizoctonia in greenhouse conditions. Mycoscience (Japan) (2003).
Cao, Y. et al. Bacillus subtilis SQR 9 can control Fusarium wilt in cucumber by colonizing plant roots. Biol. Fertil. Soils 47, 495–506. https://doi.org/10.1007/s00374-011-0556-2 (2011).
Google Scholar
Rocha, F. Y. O. et al. 2017 Taxonomical and functional characterization of Bacillus strains isolated from tomato plants and their biocontrol activity against races 1, 2 and 3 of Fusarium oxysporum f. sp. lycopersici. Appl. Soil Ecol. 120, 8–19. https://doi.org/10.1016/j.apsoil.2017.07.025 (2017).
Google Scholar
Zaim, S., Bekkar, A. A. & Belabid, L. Efficacy of Bacillus subtilis and Trichoderma harzianum combination on chickpea Fusarium wilt caused by Fusarium oxysporum f. sp. ciceris. Arch. Phytopathol. Plant Protect. 51, 217–226. https://doi.org/10.1080/03235408.2018.1447896 (2018).
Google Scholar
Hartmann, A., Schmid, M., Van Tuinen, D. & Berg, G. Plant-driven selection of microbes. Plant Soil 321, 235–257. https://doi.org/10.1007/s11104-008-9814-y (2009).
Google Scholar
Zhao, Y. et al. Antagonistic action of Bacillus subtilis strain SG6 on Fusarium graminearum. PLoS ONE 9, e92486. https://doi.org/10.1371/journal.pone.0092486 (2014).
Google Scholar
Deng, J. J. et al. Biocontrol activity of recombinant aspartic protease from Trichoderma harzianum against pathogenic fungi. Enzyme Microb. Technol. 112(35), 42. https://doi.org/10.1016/j.enzmictec.2018.02.002 (2018).
Google Scholar
Nieto-Jacobo, M. F. et al. Environmental growth conditions of Trichoderma spp. affects indole acetic acid derivatives, volatile organic compounds, and plant growth promotion. Front Plant Sci. 8, 102. https://doi.org/10.3389/fpls.2017.00102 (2017).
Google Scholar
Lewis, J. A., Papavizas, G. C. & Lumsden, R. D. A new formulation system for the application of biocontrol fungi to soil. Biocontrol Sci. Technol. 1, 59–69. https://doi.org/10.1080/09583159109355186 (1991).
Google Scholar
Kumar, S., Thakur, M. & Rani, A. Trichoderma: Mass production, formulation, quality control, delivery and its scope in commercialization in India for the management of plant diseases. Afr. J. Agric. Res. 9, 3838–3852. https://doi.org/10.5897/AJAR2014.9061 (2014).
Google Scholar
Jangir, M., Pathak, R., Sharma, A., Sharma, S. & Sharma, S. Volatiles as strong markers for antifungal activity against Fusarium oxysporum f. sp. lycopersici. Indian Phytopathol. 72, 681–687. https://doi.org/10.1007/s42360-018-0073-4 (2019).
Google Scholar
Jangir, M., Sharma, S. & Sharma, S. Target and non-target effects of dual inoculation of biocontrol agents against Fusarium wilt in Solanum lycopersicum. Biol. Control 138, 104069. https://doi.org/10.1016/j.biocontrol.2019.104069 (2019).
Google Scholar
Niranjana, S. R., Lalitha, S. & Hariprasad, P. Mass multiplication and formulations of biocontrol agents for use against Fusarium wilt of pigeonpea through seed treatment. Int. J. Pest Manag. 55, 317–324. https://doi.org/10.1007/s00344-009-9103-x (2009).
Google Scholar
Khan, W. et al. Seaweed extracts as biostimulants of plant growth and development. J. Plant Growth Regul. 28, 386–399 (2009).
Google Scholar
Sikkema, J., De Bont, J. A. & Poolman, B. Mechanisms of membrane toxicity of hydrocarbons. Microbiol. Rev. 59, 201–222. https://doi.org/10.1128/mr.59.2.201-222.1995 (1995).
Google Scholar
Tang, R. et al. Synthesis, antifungal and antibacterial activity for novel amide derivatives containing a triazole moiety. Chem. Cent. J. 7, 30. https://doi.org/10.1186/1752-153X-7-30 (2013).
Google Scholar
Yano, T., Miyahara, Y., Morii, N., Okano, T. & Kubota, H. Pentanol and benzyl alcohol attack bacterial surface structures differently. Appl. Environ. Microbiol. 82, 402–408. https://doi.org/10.1128/AEM.02515-15 (2016).
Google Scholar
Garnica-Vergara, A. et al. The volatile 6-pentyl-2H-pyran-2-one from Trichoderma atroviride regulates Arabidopsis thaliana root morphogenesis via auxin signaling and ETHYLENE INSENSITIVE 2 functioning. New Phytol. 209, 1496–1512. https://doi.org/10.1111/nph.13725 (2016).
Google Scholar
El-Benawy, N. M., Abdel-Fattah, G. M., Ghoneem, K. M. & Shabana, Y. M. Antimicrobial activities of Trichoderma atroviride against common bean seed-borne Macrophomina phaseolina and Rhizoctonia solani. Egypt. J. Basic Appl. Sci. 7, 267–280. https://doi.org/10.1080/2314808X.2020.1809849 (2020).
Google Scholar
Scarselletti, R. & Faull, J. L. In vitro activity of 6-pentyl-α-pyrone, a metabolite of Trichoderma harzianum, in the inhibition of Rhizoctonia solani and Fusarium oxysporum f. sp. lycopersici. Mycol. Res. 98, 1207–1209. https://doi.org/10.1016/S0953-7562(09)80206-2 (1994).
Google Scholar
Khan, R. A. A., Najeeb, S., Hussain, S., Xie, B. & Li, Y. Bioactive secondary metabolites from Trichoderma spp. against phytopathogenic fungi. Microorganisms. 8, 817. https://doi.org/10.3390/microorganisms8060817 (2020).
Google Scholar
Srinivasa, N., Sriram, S., Singh, C. & Shivashankar, K. S. Secondary metabolites approach to study the bio-efficacy of Trichoderma asperellum isolates in India. Int. J. Curr. Microbiol. Appl. Sci. 6, 1105–1123. https://doi.org/10.20546/ijcmas.2017.605.120 (2017).
Google Scholar
Srinivasa, N. & Devi, T. P. Separation and identification of antifungal compounds from Trichoderma species by GC–MS and their bio-efficacy against soil-borne pathogens. Bioinfolet A Q. J. Life Sci. 11, 255–257 (2014).
Li, S., Jin, X. & Chen, J. Effects of piperidine and piperideine alkaloids from the venom of red imported fire ants, Solenopsis invicta Buren, on Pythium ultimum Trow growth in vitro and the application of piperideine alkaloids to control cucumber damping-off in the greenhouse. Pest Manag. Sci. 68, 1546–1552. https://doi.org/10.1002/ps.3337 (2012).
Google Scholar
Parikh, K. S. & Vyas, S. P. Synthesis and antimicrobial screening of some new s-triazine based piperazine and piperidine derivatives. Der Chemica Sinica 3, 430–434 (2012).
Google Scholar
Morton, V. & Staub, T. A short history of fungicides. APSnet Features. St. Paul (MN): American Phytopathological Society (US) (2008).
Pohl, C. H., Kock, J. L. F. & Thibane, V. S. Antifungal free fatty acids: A Review. Sci. Against Microbial Pathogens 3, 61–71 (2011).
Nuryanti, W. H. Screening of volatile compounds of Brotowali (Tinospora crispa) and antifungal activity against Candida albicans. Int. J. Pharmacog. Phytochemi. Res. 7, 132–136 (2015).
Shelat, C. D. & Vashi, R. T. Synthesis, characterization, chelating properties and anti-fungal activity of 2-(4-phenylpiperazinyl) methyl-3-(8-quinolinol-5-YL)-4 (3H)-quinazolinone. J. Chem. 2, 86–90. https://doi.org/10.1155/2005/973414 (2005).
Google Scholar
Khan, I., Ibrar, A., Abbas, N. & Saeed, A. Recent advances in the structural library of functionalized quinazoline and quinazolinone scaffolds: Synthetic approaches and multifarious applications. Eur. J. Med. Chem. 76, 193–244. https://doi.org/10.1016/j.ejmech.2014.02.005 (2014).
Google Scholar
Zhang, J. et al. One pot synthesis and antifungal activity against plant pathogens of quinazolinone derivatives containing an amide moiety. Bio-org. Med. Chem. Lett. 26, 2273–2277. https://doi.org/10.1016/j.bmcl.2016.03.052 (2016).
Google Scholar
Kumar, H. & Jain, S. Synthesis and antimicrobial evaluation of 4-benzylidene-pyrazolidine-3, 5-dione derivatives. Int. J. Pharm. Sci. Res. 4, 453–457 (2013).
Google Scholar
Boussalah, N. et al. Antifungal activities of amino acid ester functional pyrazolyl compounds against Fusarium oxysporum f. sp. albedinis and Saccharomyces cerevisiae yeast. J. Saudi. Chem. Soc. 17, 17–21. https://doi.org/10.1016/j.jscs.2011.02.016 (2013).
Google Scholar
El-Youbi, M. et al. Antibacterial and antifungal activities of new pyrazolic compounds. Moroccan J. Biol. 12, 9–13 (2015).
Al-Ghorbani, M., Lakshmi Ranganatha, V., Prashanth, T., Begum, B. & Khanum, S. A. In vitro antibacterial and antifungal evaluation of some benzophenone analogues. Der Pharma Chem. 5, 269–273. https://doi.org/10.1007/s13738-021-02230-y (2013).
Google Scholar
Howell, C. R. Mechanisms employed by Trichoderma species in the biological control of plant diseases: The history and evolution of current concepts. Plant Dis. 87, 4–10. https://doi.org/10.1094/PDIS.2003.87.1.4 (2003).
Google Scholar
Senol, M., Nadaroglu, H., Dikbas, N. & Kotan, R. Purification of Chitinase enzymes from Bacillus subtilis bacteria TV-125, investigation of kinetic properties and antifungal activity against Fusarium culmorum. Ann. Clin. Microbiol. Antimicrob. 13, 35. https://doi.org/10.1186/s12941-014-0035-3 (2014).
Google Scholar
Saber, W. I. et al. Chitinase production by Bacillus subtilis ATCC 11774 and its effect on biocontrol of Rhizoctonia diseases of potato. Acta Biol. Hung. 66, 436–448. https://doi.org/10.1556/018.66.2015.4.8 (2015).
Google Scholar
Ting, A. S. Y. & Chai, J. Y. Chitinase and β-1, 3-glucanase activities of Trichoderma harzianum in response towards pathogenic and non-pathogenic isolates: Early indications of compatibility in consortium. Biocatal. Agric. Biotechnol. 4, 109–113. https://doi.org/10.1016/j.bcab.2014.10.003 (2015).
Google Scholar
Guleria, S., Walia, A., Chauhan, A. & Shirkot, C. K. Molecular characterization of alkaline protease of Bacillus amyloliquefaciens SP1 involved in biocontrol of Fusarium oxysporum. Int. J. Food Microbiol. 232, 134–143. https://doi.org/10.1016/j.ijfoodmicro.2016.05.030 (2016).
Google Scholar
Khan, N. et al. Antifungal activity of Bacillus species against Fusarium and analysis of the potential mechanisms used in biocontrol. Front. Microbiol. 9, 2363. https://doi.org/10.3389/fmicb.2018.02363 (2018).
Google Scholar
Kumar, P., Dubey, R. C. & Maheshwari, D. K. Bacillus strains isolated from rhizosphere showed plant growth promoting and antagonistic activity against phytopathogens. Microbiol. Res. 167, 493–499. https://doi.org/10.1016/j.micres.2012.05.002 (2012).
Google Scholar
Jeyarajan, R., Ramakrishnan, G., Dinakaran, D. & Sridar, R. Development of products Trichoderma viride and Bacillus subtilis for biocontrol of root rot diseases. In Biotechnology in India. (Ed Dwivedi, B. K.) 25–36 (Bioved Research Society, Allahabad, India, 1994).
Szczech, M. & Maciorowski, R. Microencapsulation technique with organic additives for biocontrol agents. J. Hortic. Res. 24, 111–122. https://doi.org/10.1515/johr-2016-0013 (2016).
Google Scholar
Li, Z. et al. Effects of bacteria-free filtrate from Bacillus megaterium strain L2 on the mycelium growth and spore germination of Alternaria alternata. Biotechnol. Biotechnol. Equip. 29, 1062–1068. https://doi.org/10.1080/13102818.2015.1068135 (2015).
Google Scholar
Song, W. et al. Tomato Fusarium wilt and its chemical control strategies in a hydroponic system. Crop Protect. 23, 243–247. https://doi.org/10.1016/j.cropro.2003.08.007 (2004).
Google Scholar
Alnahdi, H. S. Isolation and screening of extracellular proteases produced by new isolated Bacillus sp. J Appl. Pharm. Sci. 2, 71–74. https://doi.org/10.7324/JAPS.2012.2915 (2012).
Google Scholar
Zarei, M. et al. Characterization of a chitinase with antifungal activity from a native Serratia marcescens B4A. Braz. J. Microbiol. 42, 1017–1029 (2011).
Google Scholar
Jeong, M. H. et al. Isolation and characterization of metabolites from Bacillus licheniformis MH48 with antifungal activity against plant pathogens. Microb. Pathog. 110, 645–653. https://doi.org/10.1016/j.micpath.2017.07.027 (2017).
Google Scholar
Sen, A. & Batra, A. Evaluation of antimicrobial activity of different solvent extracts of medicinal plant: Melia azedarach L. Int. J. Curr. Pharm. Res. 4, 67–73 (2012).
Jangir, M., Pathak, R., Sharma, S. & Sharma, S. Biocontrol mechanisms of Bacillus sp., isolated from tomato rhizosphere, against Fusarium oxysporum f. sp. lycopersici. Biol. Control 123, 60–70. https://doi.org/10.1016/j.biocontrol.2018.04.018 (2018).
Google Scholar
Suleiman, M. M., McGaw, L. I., Naidoo, V. & Eloff, J. Detection of antimicrobial compounds by bioautography of different extracts of leaves of selected South African tree species. Afr. J. Tradit. Complement Altern. Med. 7, 64–78. https://doi.org/10.4314/ajtcam.v7i1.57269 (2010).
Google Scholar
Balouiri, M., Sadiki, M. & Ibnsouda, S. K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 6, 71–79. https://doi.org/10.1016/j.jpha.2015.11.005 (2016).
Google Scholar

