Preloader

The performance of a flapping foil for a self-propelled fishlike body

  • 1.

    Garrick, I. E. Propulsion of a Flapping and Oscillating Airfoil, vol. 567 of National Advisory Committee for Aeronautics: Report (NACA, 1936).

  • 2.

    Fernandez-Feria, R. Note on optimum propulsion of heaving and pitching airfoils from linear potential theory. J. Fluid Mech. 826, 781–796 (2017).

    ADS 
    MathSciNet 
    Article 

    Google Scholar 

  • 3.

    Jones, K. & Platzer, M. Numerical computation of flapping-wing propulsion and power extraction. AIAA Paper 97, 0826 (1997).

    Google Scholar 

  • 4.

    Young, J. & Lai, J. C. S. Mechanisms influencing the efficiency of oscillating airfoil propulsion. AIAA J. 45, 1695–1702 (2007).

    ADS 
    Article 

    Google Scholar 

  • 5.

    Anderson, J. M., Streitlien, K., Barrett, D. S. & Triantafyllou, M. S. Oscillating foils of high propulsive efficiency. J. Fluid Mech. 360, 41–72 (1998).

    ADS 
    MathSciNet 
    Article 

    Google Scholar 

  • 6.

    Floryan, D., Van Buren, T., Rowley, C. W. & Smits, A. J. Scaling the propulsive performance of heaving and pitching foils. J. Fluid Mech. 822, 386–397 (2017).

    ADS 
    MathSciNet 
    Article 

    Google Scholar 

  • 7.

    Gray, J. Studies in animal locomotion i. J. Experim. Biol. 10, 88–104 (1933).

    Article 

    Google Scholar 

  • 8.

    Bale, R., Hao, M., Bhalla, A. P. S., Patel, N. & A.Patankar, N. Gray’s paradox a fluid mechanical perspective. Sci. Rep. 4, 5904 (2014).

  • 9.

    Lucas, K. N., Lauder, G. V. & Tytell, E. D. Airfoil-like mechanics generate thrust on the anterior body of swimming fishes. PNAS 117, 10585–10592 (2020).

    CAS 
    Article 

    Google Scholar 

  • 10.

    Lighthill, J. Note on the swimming of slender fish. J. Fluid Mech. 9, 305–317 (1960).

    ADS 
    MathSciNet 
    Article 

    Google Scholar 

  • 11.

    Wu, T. Y. Swimming of a waving plate. J. Fluid Mech. 10, 321–344 (1961).

    ADS 
    MathSciNet 
    Article 

    Google Scholar 

  • 12.

    Carling, J., Williams, T. L. & Bowtell, G. Self-propelled anguilliform swimming simultaneous solution of the two-dimensional Navier–Stokes equations and newtons laws of motion. J. Experim. Biol. 201, 3143–3166 (1998).

    Article 

    Google Scholar 

  • 13.

    Kern, S. & Koumoutsakos, P. Simulations of optimized anguilliform swimming. J. Experim. Biol. 209, 4841–4857 (2006).

    Article 

    Google Scholar 

  • 14.

    Yang, Y., Wu, G. H., Yu & Tong, B. G. Two-dimensional self-propelled fish motion in medium: An integrated method for deforming body dynamics and unsteady fluid dynamics. Chin. Phys. Lett. 25, 597–600 (2008).

  • 15.

    Borazjani, I. & Sotiropoulos, F. On the role of form and kinematics on the hydrodynamics of self-propelled body-caudal fin swimming. J. Experim. Biol. 213, 89–107 (2010).

    CAS 
    Article 

    Google Scholar 

  • 16.

    Gabrielli, G. & von Kármán, T. What price speed? Specific power required for propulsion. J. Am. Soc. Naval Eng. 63, 188–200 (1951).

    Google Scholar 

  • 17.

    Bale, R., Hao, M., Bhalla, A. P. S. & Patankar, N. A. Energy efficiency and allometry of movement of swimming and flying animals. PNAS 111, 7517–7521 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 18.

    Smits, A. J. Undulatory and oscillatory swimming. J. Fluid Mech. 874, 1–70 (2019).

    ADS 
    MathSciNet 
    Article 

    Google Scholar 

  • 19.

    Akoz, E. & Moored, K. W. Unsteady propulsion by an intermittent swimming gait. J. Fluid Mech. 834, 149–172 (2018).

    ADS 
    MathSciNet 
    Article 

    Google Scholar 

  • 20.

    Schultz, W. W. & Webb, P. W. Power requirements of swimming: Do new methods resolve old questions?. Integr. Comp. Biol. 42, 1018–25 (2002).

    Article 

    Google Scholar 

  • 21.

    Gazzola, M., Argentina, M. & Mahadevan, L. Energy gait and speed selection in slender inertial swimmers. PNAS 112, 3874–3879 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 22.

    Alben, S. & Shelley, M. Coherent locomotion as an attracting state for a free flapping body. PNAS 102, 11163–11166 (2005).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 23.

    X, Zhang, Ni Wang, S. & He, G. Effects of geometric shape on the hydrodynamics of a self-propelled flapping foil. Phys. Fluids 21, 103302 (2009).

    ADS 
    Article 

    Google Scholar 

  • 24.

    Arora, N., Gupta, A., Sanghi, S., Aono, H. & Shyy, W. Flow patterns and efficiency-power characteristics of a self-propelled, heaving rigid flat plate. J. Fluid Struct. 66, 517–542 (2016).

    ADS 
    Article 

    Google Scholar 

  • 25.

    Lin, X., Wu, J. & Zhang, T. Performance investigation of a self-propelled foil with combined oscillating motion in stationary fluid. Ocean. Eng. 174, 33–49 (2019).

    ADS 
    Article 

    Google Scholar 

  • 26.

    Lighthill, J. Aquatic animal propulsion of high hydromechanical efficiency. J. Fluid Mech. 44, 265–301 (1970).

    ADS 
    Article 

    Google Scholar 

  • 27.

    Wu, T. Y. Fish swimming and bird/insect flight. Annu. Rev. Fluid Mech. 43, 25–58 (2011).

    ADS 
    MathSciNet 
    Article 

    Google Scholar 

  • 28.

    Paniccia, D., Graziani, G., Lugni, C. & Piva, R. The relevance of recoil and free swimming in aquatic locomotion. J. Fluids Struct. 103, 103290. https://doi.org/10.1016/j.jfluidstructs.2021.103290 (2021).

    ADS 
    Article 
    MATH 

    Google Scholar 

  • 29.

    Maertens, A. P., Gao, A. & Triantafyllou, M. S. Optimal undulatory swimming for single fish-like body and for pair of interacting swimmers. J. Fluid Mech. 813, 301–345 (2017).

    ADS 
    MathSciNet 
    Article 

    Google Scholar 

  • 30.

    Bainbridge, R. The speed of swimming of fish as related to size and to the frequency and amplitude of the tail beat. J. Experim. Biol. 35, 109–133 (1958).

    Article 

    Google Scholar 

  • 31.

    Paniccia, D., Graziani, G., Lugni, C. & Piva, R. On the role of added mass and vorticity release for self propelled aquatic locomotion. J. Fluid Mech. 918, A45. https://doi.org/10.1017/jfm.2021.375 (2021).

    ADS 
    MathSciNet 
    CAS 
    Article 
    MATH 

    Google Scholar 

  • 32.

    White, C. H., Lauder, G. V. & Bart-Smith, H. Tunabot flex: a tuna-inspired robot with body flexibility improves high-performance swimming. Bioinspir. Biomim. 16, 026019 (2021).

    Article 

    Google Scholar 

  • 33.

    Zhang, D., Pan, G., Chao, L. & Yan, G. Mechanisms influencing the efficiency of aquatic locomotion. Mod. Phys. Lett. B 32, 1850299 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 34.

    Floryan, D., Van Buren, T. & Smits, A. J. Efficient cruising for swimming and flying animals is dictated by fluid drag. PNAS 115, 8116–8118 (2018).

    CAS 
    Article 

    Google Scholar 

  • 35.

    Di Santo, V., Kenaley, C. P. & Lauder, G. V. High postural costs and anaerobic metabolism during swimming support the hypothesis of a u-shaped metabolism-speed curve in fishes. PNAS 114, 13048–13053 (2017).

    Article 

    Google Scholar 

  • 36.

    Zhu, J. et al. Tuna robotics: A high-frequency experimental platform exploring the performance space of swimming fishes. Sci. Robot. 4, eaax4615 (2019).

    Article 

    Google Scholar 

  • 37.

    Li, N., Liu, X. & Su, Y. Numerical study on the hydrodynamics of thunniform bio-inspired swimming under self-propulsion. PLOS One 12, e0174740 (2017).

    Article 

    Google Scholar 

  • 38.

    Akoz, E., Han, P., Liu, G., Dong, H. & Moored, K. W. Large-amplitude intermittent swimming in viscous and inviscid flows. AIAA J. 57, 1–8 (2019).

    Article 

    Google Scholar 

  • 39.

    Van Buren, T., Floryan, D., Wei, N. & Smits, A. J. Flow speed has little impact on propulsive characteristics of oscillating foils. Phys. Rev. Fluids 3, 013103 (2018).

    ADS 
    Article 

    Google Scholar 

  • 40.

    Noca, F. On the evaluation of time-dependent fluid dynamic forces on bluff bodies. Ph.D. thesis, California Institute of Technology (1997).

  • 41.

    Wu, J. Z., Ma, H. Y. & Zhou, M. D. Vortical Flows (Springer, 2015).

  • 42.

    Landau, L. D. & Lifschitz, E. M. Fluid Mechanics, vol. 6 (Pergamon Press, 1986), 2 edn.

  • 43.

    Childress, S. An Introduction to Theoretical Fluid Dynamics (Courant Lecture Notes, vol. 19, AMS, 2009).

  • 44.

    Graziani, G., Ranucci, M. & Piva, R. From a boundary integral formulation to a vortex method for viscous flows. Comput. Mech. 15(4), 301–314 (1995).

    Article 

    Google Scholar 

  • Source link