Preloader

Nanopore sequencing technology, bioinformatics and applications

  • 1.

    Deamer, D., Akeson, M. & Branton, D. Three decades of nanopore sequencing. Nat. Biotechnol. 34, 518–524 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 2.

    Jain, M., Olsen, H. E., Paten, B. & Akeson, M. The Oxford Nanopore MinION: delivery of nanopore sequencing to the genomics community. Genome Biol. 17, 239 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 3.

    van Dijk, E. L., Jaszczyszyn, Y., Naquin, D. & Thermes, C. The third revolution in sequencing technology. Trends Genet. 34, 666–681 (2018).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 4.

    Yang, Y. et al. Advances in nanopore sequencing technology. J. Nanosci. Nanotechnol. 13, 4521–4538 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 5.

    Maitra, R. D., Kim, J. & Dunbar, W. B. Recent advances in nanopore sequencing. Electrophoresis 33, 3418–3428 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 6.

    Leggett, R. M. & Clark, M. D. A world of opportunities with nanopore sequencing. J. Exp. Bot. 68, 5419–5429 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 7.

    Noakes, M. T. et al. Increasing the accuracy of nanopore DNA sequencing using a time-varying cross membrane voltage. Nat. Biotechnol. 37, 651–656 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 8.

    Branton, D. et al. The potential and challenges of nanopore sequencing. Nat. Biotechnol. 26, 1146–1153 (2008).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 9.

    Song, L. et al. Structure of staphylococcal α-hemolysin, a heptameric transmembrane pore. Science 274, 1859–1866 (1996).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 10.

    Kasianowicz, J. J., Brandin, E., Branton, D. & Deamer, D. W. Characterization of individual polynucleotide molecules using a membrane channel. Proc. Natl Acad. Sci. USA 93, 13770–13773 (1996).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 11.

    Akeson, M., Branton, D., Kasianowicz, J. J., Brandin, E. & Deamer, D. W. Microsecond time-scale discrimination among polycytidylic acid, polyadenylic acid, and polyuridylic acid as homopolymers or as segments within single RNA molecules. Biophys. J. 77, 3227–3233 (1999).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 12.

    Meller, A., Nivon, L., Brandin, E., Golovchenko, J. & Branton, D. Rapid nanopore discrimination between single polynucleotide molecules. Proc. Natl Acad. Sci. USA 97, 1079–1084 (2000).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 13.

    Stoddart, D., Heron, A. J., Mikhailova, E., Maglia, G. & Bayley, H. Single-nucleotide discrimination in immobilized DNA oligonucleotides with a biological nanopore. Proc. Natl Acad. Sci. USA 106, 7702–7707 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 14.

    Stoddart, D. et al. Nucleobase recognition in ssDNA at the central constriction of the α-hemolysin pore. Nano Lett. 10, 3633–3637 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 15.

    Stoddart, D., Maglia, G., Mikhailova, E., Heron, A. J. & Bayley, H. Multiple base-recognition sites in a biological nanopore: two heads are better than one. Angew. Chem. Int. Ed. Engl. 49, 556–559 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 16.

    Butler, T. Z., Pavlenok, M., Derrington, I. M., Niederweis, M. & Gundlach, J. H. Single-molecule DNA detection with an engineered MspA protein nanopore. Proc. Natl Acad. Sci. USA 105, 20647–20652 (2008).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 17.

    Derrington, I. M. et al. Nanopore DNA sequencing with MspA. Proc. Natl Acad. Sci. USA 107, 16060–16065 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 18.

    Niederweis, M. et al. Cloning of the mspA gene encoding a porin from Mycobacterium smegmatis. Mol. Microbiol. 33, 933–945 (1999).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 19.

    Faller, M., Niederweis, M. & Schulz, G. E. The structure of a mycobacterial outer-membrane channel. Science 303, 1189–1192 (2004).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 20.

    Benner, S. et al. Sequence-specific detection of individual DNA polymerase complexes in real time using a nanopore. Nat. Nanotechnol. 2, 718–724 (2007).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 21.

    Hornblower, B. et al. Single-molecule analysis of DNA–protein complexes using nanopores. Nat. Methods 4, 315–317 (2007).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 22.

    Cockroft, S. L., Chu, J., Amorin, M. & Ghadiri, M. R. A single-molecule nanopore device detects DNA polymerase activity with single-nucleotide resolution. J. Am. Chem. Soc. 130, 818–820 (2008).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 23.

    Lieberman, K. R. et al. Processive replication of single DNA molecules in a nanopore catalyzed by phi29 DNA polymerase. J. Am. Chem. Soc. 132, 17961–17972 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 24.

    Cherf, G. M. et al. Automated forward and reverse ratcheting of DNA in a nanopore at 5-A precision. Nat. Biotechnol. 30, 344–348 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 25.

    Manrao, E. A. et al. Reading DNA at single-nucleotide resolution with a mutant MspA nanopore and phi29 DNA polymerase. Nat. Biotechnol. 30, 349–353 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 26.

    Mason, C. E. & Elemento, O. Faster sequencers, larger datasets, new challenges. Genome Biol. 13, 314 (2012).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 27.

    Wang, Y., Yang, Q. & Wang, Z. The evolution of nanopore sequencing. Front. Genet. 5, 449 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 28.

    Shi, W., Friedman, A. K. & Baker, L. A. Nanopore sensing. Anal. Chem. 89, 157–188 (2017).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 29.

    Minei, R., Hoshina, R. & Ogura, A. De novo assembly of middle-sized genome using MinION and Illumina sequencers. BMC Genomics 19, 700 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 30.

    Ashton, P. M. et al. MinION nanopore sequencing identifies the position and structure of a bacterial antibiotic resistance island. Nat. Biotechnol. 33, 296–300 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 31.

    Carter, J. M. & Hussain, S. Robust long-read native DNA sequencing using the ONT CsgG Nanopore system. Wellcome Open Res 2, 23 (2017).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 32.

    Wick, R. R., Judd, L. M. & Holt, K. E. Performance of neural network basecalling tools for Oxford Nanopore sequencing. Genome Biol. 20, 129 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 33.

    Gong, L. et al. Picky comprehensively detects high-resolution structural variants in nanopore long reads. Nat. Methods 15, 455–460 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 34.

    Brickwedde, A. et al. Structural, physiological and regulatory analysis of maltose transporter genes in Saccharomyces eubayanus CBS 12357T. Front. Microbiol. 9, 1786 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 35.

    Zeng, J. et al. Causalcall: nanopore basecalling using a temporal convolutional network. Front. Genet. 10, 1332 (2020).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 36.

    Helmersen, K. & Aamot, H. V. DNA extraction of microbial DNA directly from infected tissue: an optimized protocol for use in nanopore sequencing. Sci. Rep. 10, 2985 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 37.

    Tytgat, O. et al. Nanopore sequencing of a forensic STR multiplex reveals loci suitable for single-contributor STR profiling. Genes 11, 381 (2020).

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 

  • 38.

    Huang, Y. T., Liu, P. Y. & Shih, P. W. Homopolish: a method for the removal of systematic errors in nanopore sequencing by homologous polishing. Genome Biol. 22, 95 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 39.

    Rhoads, A. & Au, K. F. PacBio sequencing and its applications. Genomics Proteomics Bioinformatics 13, 278–289 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 40.

    Ip, C. L. C. et al. MinION Analysis and Reference Consortium: phase 1 data release and analysis. F1000Res 4, 1075 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 41.

    Jain, M. et al. MinION Analysis and Reference Consortium: phase 2 data release and analysis of R9.0 chemistry. F1000Res 6, 760 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 42.

    Weirather, J. L. et al. Comprehensive comparison of Pacific Biosciences and Oxford Nanopore Technologies and their applications to transcriptome analysis. F1000Res 6, 100 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 43.

    Seki, M. et al. Evaluation and application of RNA-seq by MinION. DNA Res. 26, 55–65 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 44.

    Rang, F. J., Kloosterman, W. P. & de Ridder, J. From squiggle to basepair: computational approaches for improving nanopore sequencing read accuracy. Genome Biol. 19, 90 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 45.

    Goodwin, S. et al. Oxford Nanopore sequencing, hybrid error correction, and de novo assembly of a eukaryotic genome. Genome Res. 25, 1750–1756 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 46.

    David, M., Dursi, L. J., Yao, D., Boutros, P. C. & Simpson, J. T. Nanocall: an open source basecaller for Oxford Nanopore sequencing data. Bioinformatics 33, 49–55 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 47.

    Boza, V., Brejova, B. & Vinar, T. DeepNano: deep recurrent neural networks for base calling in MinION nanopore reads. PLoS ONE 12, e0178751 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 48.

    Gong, L., Wong, C. H., Idol, J., Ngan, C. Y. & Wei, C. L. Ultra-long read sequencing for whole genomic DNA analysis. J. Vis. Exp. https://doi.org/10.3791/58954 (2019).

  • 49.

    Payne, A., Holmes, N., Rakyan, V. & Loose, M. BulkVis: a graphical viewer for Oxford nanopore bulk FAST5 files. Bioinformatics 35, 2193–2198 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 50.

    Quick, J. & Loman, N. J. in Nanopore Sequencing: An Introduction Ch. 7 (World Scientific Press, 2019).

  • 51.

    Deschamps, S. et al. A chromosome-scale assembly of the sorghum genome using nanopore sequencing and optical mapping. Nat. Commun. 9, 4844 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 52.

    Garalde, D. R. et al. Highly parallel direct RNA sequencing on an array of nanopores. Nat. Methods 15, 201–206 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 53.

    Keller, M. W. et al. Direct RNA sequencing of the coding complete influenza A virus genome. Sci. Rep. 8, 14408 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 54.

    Pitt, M. E. et al. Evaluating the genome and resistome of extensively drug-resistant Klebsiella pneumoniae using native DNA and RNA Nanopore sequencing. Gigascience 9, giaa002 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 55.

    Cartolano, M., Huettel, B., Hartwig, B., Reinhardt, R. & Schneeberger, K. cDNA library enrichment of full length transcripts for SMRT long read sequencing. PLoS ONE 11, e0157779 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 56.

    Chen, Y. et al. A systematic benchmark of Nanopore long read RNA sequencing for transcript level analysis in human cell lines. Preprint at bioRxiv https://doi.org/10.1101/2021.04.21.440736 (2021).

  • 57.

    Nicholls, S. M., Quick, J. C., Tang, S. & Loman, N. J. Ultra-deep, long-read nanopore sequencing of mock microbial community standards. Gigascience 8, giz043 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 58.

    Magi, A., Semeraro, R., Mingrino, A., Giusti, B. & D’Aurizio, R. Nanopore sequencing data analysis: state of the art, applications and challenges. Brief. Bioinform. 19, 1256–1272 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 59.

    Cao, M. D., Ganesamoorthy, D., Cooper, M. A. & Coin, L. J. Realtime analysis and visualization of MinION sequencing data with npReader. Bioinformatics 32, 764–766 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 60.

    Watson, M. et al. poRe: an R package for the visualization and analysis of nanopore sequencing data. Bioinformatics 31, 114–115 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 61.

    Leggett, R. M., Heavens, D., Caccamo, M., Clark, M. D. & Davey, R. P. NanoOK: multi-reference alignment analysis of nanopore sequencing data, quality and error profiles. Bioinformatics 32, 142–144 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 62.

    Tarraga, J., Gallego, A., Arnau, V., Medina, I. & Dopazo, J. HPG pore: an efficient and scalable framework for nanopore sequencing data. BMC Bioinformatics 17, 107 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 63.

    Bolognini, D., Bartalucci, N., Mingrino, A., Vannucchi, A. M. & Magi, A. NanoR: a user-friendly R package to analyze and compare nanopore sequencing data. PLoS ONE 14, e0216471 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 64.

    Loman, N. J. & Quinlan, A. R. Poretools: a toolkit for analyzing nanopore sequence data. Bioinformatics 30, 3399–3401 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 65.

    De Coster, W., D’Hert, S., Schultz, D. T., Cruts, M. & Van Broeckhoven, C. NanoPack: visualizing and processing long-read sequencing data. Bioinformatics 34, 2666–2669 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 66.

    Semeraro, R. & Magi, A. PyPore: a python toolbox for nanopore sequencing data handling. Bioinformatics 35, 4445–4447 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 67.

    Senol Cali, D., Kim, J. S., Ghose, S., Alkan, C. & Mutlu, O. Nanopore sequencing technology and tools for genome assembly: computational analysis of the current state, bottlenecks and future directions. Brief. Bioinform. 20, 1542–1559 (2019).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 68.

    Amarasinghe, S. L. et al. Opportunities and challenges in long-read sequencing data analysis. Genome Biol. 21, 30 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 69.

    McIntyre, A. B. R. et al. Nanopore sequencing in microgravity. NPJ Microgravity 2, 16035 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 70.

    Teng, H. et al. Chiron: translating nanopore raw signal directly into nucleotide sequence using deep learning. Gigascience 7, giy037 (2018).

    PubMed Central 
    Article 
    CAS 
    PubMed 

    Google Scholar 

  • 71.

    Rand, A. C. et al. Mapping DNA methylation with high-throughput nanopore sequencing. Nat. Methods 14, 411–413 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 72.

    Wang, Y. et al. Single-molecule long-read sequencing reveals the chromatin basis of gene expression. Genome Res. 29, 1329–1342 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 73.

    Liu, H. et al. Accurate detection of m6A RNA modifications in native RNA sequences. Nat. Commun. 10, 4079 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 74.

    Stoiber, M. H. et al. De novo identification of DNA modifications enabled by genome-guided nanopore signal processing. Preprint at bioRxiv https://doi.org/10.1101/094672 (2016).

  • 75.

    Simpson, J. T. et al. Detecting DNA cytosine methylation using nanopore sequencing. Nat. Methods 14, 407–410 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 76.

    Liu, Q. et al. Detection of DNA base modifications by deep recurrent neural network on Oxford Nanopore sequencing data. Nat. Commun. 10, 2449 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 77.

    Ni, P. et al. DeepSignal: detecting DNA methylation state from Nanopore sequencing reads using deep-learning. Bioinformatics 35, 4586–4595 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 78.

    Liu, Q., Georgieva, D. C., Egli, D. & Wang, K. NanoMod: a computational tool to detect DNA modifications using Nanopore long-read sequencing data. BMC Genomics 20, 78 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 79.

    Yuen, Z. W. et al. Systematic benchmarking of tools for CpG methylation detection from nanopore sequencing. Nat. Commun. 12, 3438 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 80.

    Liu, Y. et al. DNA methylation-calling tools for Oxford Nanopore sequencing: a survey and human epigenome-wide evaluation. Genome Biol. 22, 295 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 81.

    Fang, G. et al. Genome-wide mapping of methylated adenine residues in pathogenic Escherichia coli using single-molecule real-time sequencing. Nat. Biotechnol. 30, 1232–1239 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 82.

    Saletore, Y. et al. The birth of the epitranscriptome: deciphering the function of RNA modifications. Genome Biol. 13, 175 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 83.

    Jenjaroenpun, P. et al. Decoding the epitranscriptional landscape from native RNA sequences. Nucleic Acids Res. 49, e7 (2020).

  • 84.

    Lorenz, D. A., Sathe, S., Einstein, J. M. & Yeo, G. W. Direct RNA sequencing enables m6A detection in endogenous transcript isoforms at base-specific resolution. RNA 26, 19–28 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 85.

    Fu, S., Wang, A. & Au, K. F. A comparative evaluation of hybrid error correction methods for error-prone long reads. Genome Biol. 20, 26 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 86.

    Viehweger, A. et al. Direct RNA nanopore sequencing of full-length coronavirus genomes provides novel insights into structural variants and enables modification analysis. Genome Res. 29, 1545–1554 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 87.

    Lima, L. et al. Comparative assessment of long-read error correction software applied to Nanopore RNA-sequencing data. Brief. Bioinform. 21, 1164–1181 (2019).

    Article 
    CAS 

    Google Scholar 

  • 88.

    Koren, S. et al. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 27, 722–736 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 89.

    Salmela, L., Walve, R., Rivals, E. & Ukkonen, E. Accurate self-correction of errors in long reads using de Bruijn graphs. Bioinformatics 33, 799–806 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 90.

    Au, K. F., Underwood, J. G., Lee, L. & Wong, W. H. Improving PacBio long read accuracy by short read alignment. PLoS ONE 7, e46679 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 91.

    Salmela, L. & Rivals, E. LoRDEC: accurate and efficient long read error correction. Bioinformatics 30, 3506–3514 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 92.

    Bao, E. & Lan, L. HALC: high throughput algorithm for long read error correction. BMC Bioinformatics 18, 204 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 93.

    Wang, J. R., Holt, J., McMillan, L. & Jones, C. D. FMLRC: hybrid long read error correction using an FM-index. BMC Bioinformatics 19, 50 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 94.

    Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 95.

    Sovic, I. et al. Fast and sensitive mapping of nanopore sequencing reads with GraphMap. Nat. Commun. 7, 11307 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 96.

    Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 97.

    Kielbasa, S. M., Wan, R., Sato, K., Horton, P. & Frith, M. C. Adaptive seeds tame genomic sequence comparison. Genome Res. 21, 487–493 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 98.

    Sedlazeck, F. J. et al. Accurate detection of complex structural variations using single-molecule sequencing. Nat. Methods 15, 461–468 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 99.

    Zhou, A., Lin, T. & Xing, J. Evaluating nanopore sequencing data processing pipelines for structural variation identification. Genome Biol. 20, 237 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 100.

    Wu, T. D. & Watanabe, C. K. GMAP: a genomic mapping and alignment program for mRNA and EST sequences. Bioinformatics 21, 1859–1875 (2005).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 101.

    Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 102.

    Marić, J., Sović, I., Križanović, K., Nagarajan, N. & Šikić, M. Graphmap2—splice-aware RNA-seq mapper for long reads. Preprint at bioRxiv https://doi.org/10.1101/720458 (2019).

  • 103.

    Liu, B. et al. deSALT: fast and accurate long transcriptomic read alignment with de Bruijn graph-based index. Genome Biol. 20, 274 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 104.

    Begik, O. et al. Quantitative profiling of pseudouridylation dynamics in native RNAs with nanopore sequencing. Nat. Biotechnol. 39, 1278–1291 (2021).

  • 105.

    Giordano, F. et al. De novo yeast genome assemblies from MinION, PacBio and MiSeq platforms. Sci. Rep. 7, 3935 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 106.

    Bertrand, D. et al. Hybrid metagenomic assembly enables high-resolution analysis of resistance determinants and mobile elements in human microbiomes. Nat. Biotechnol. 37, 937–944 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 107.

    Li, H. Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences. Bioinformatics 32, 2103–2110 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 108.

    de Lannoy, C., de Ridder, D. & Risse, J. The long reads ahead: de novo genome assembly using the MinION. F1000Res 6, 1083 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 109.

    Loman, N. J., Quick, J. & Simpson, J. T. A complete bacterial genome assembled de novo using only nanopore sequencing data. Nat. Methods 12, 733–735 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 110.

    Kolmogorov, M., Yuan, J., Lin, Y. & Pevzner, P. A. Assembly of long, error-prone reads using repeat graphs. Nat. Biotechnol. 37, 540–546 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 111.

    Ruan, J. & Li, H. Fast and accurate long-read assembly with wtdbg2. Nat. Methods 17, 155–158 (2020).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 112.

    Cretu Stancu, M. et al. Mapping and phasing of structural variation in patient genomes using nanopore sequencing. Nat. Commun. 8, 1326 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 113.

    Tham, C. Y. et al. NanoVar: accurate characterization of patients’ genomic structural variants using low-depth nanopore sequencing. Genome Biol. 21, 56 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 114.

    Bowden, R. et al. Sequencing of human genomes with nanopore technology. Nat. Commun. 10, 1869 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 115.

    Chaisson, M. J. P. et al. Multi-platform discovery of haplotype-resolved structural variation in human genomes. Nat. Commun. 10, 1784 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 116.

    Edge, P. & Bansal, V. Longshot enables accurate variant calling in diploid genomes from single-molecule long read sequencing. Nat. Commun. 10, 4660 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 117.

    Schrinner, S. D. et al. Haplotype threading: accurate polyploid phasing from long reads. Genome Biol. 21, 252 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 118.

    Ewing, A. D. et al. Nanopore sequencing enables comprehensive transposable element epigenomic profiling. Mol. Cell 80, 915–928 (2020).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 119.

    Bolognini, D., Magi, A., Benes, V., Korbel, J. O. & Rausch, T. TRiCoLOR: tandem repeat profiling using whole-genome long-read sequencing data. Gigascience 9, giaa101 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 120.

    Byrne, A. et al. Nanopore long-read RNAseq reveals widespread transcriptional variation among the surface receptors of individual B cells. Nat. Commun. 8, 16027 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 121.

    Oikonomopoulos, S., Wang, Y. C., Djambazian, H., Badescu, D. & Ragoussis, J. Benchmarking of the Oxford Nanopore MinION sequencing for quantitative and qualitative assessment of cDNA populations. Sci. Rep. 6, 31602 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 122.

    Volden, R. et al. Improving nanopore read accuracy with the R2C2 method enables the sequencing of highly multiplexed full-length single-cell cDNA. Proc. Natl Acad. Sci. USA 115, 9726–9731 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 123.

    Tang, A. D. et al. Full-length transcript characterization of SF3B1 mutation in chronic lymphocytic leukemia reveals downregulation of retained introns. Nat. Commun. 11, 1438 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 124.

    Kuosmanen, A., Sobih, A., Rizzi, R., Mäkinen, V. & Tomescu, A. I. On using longer RNA-seq reads to improve transcript prediction accuracy. In Proc. 9th International Joint Conference on Biomedical Engineering Systems and Technologies 272–277 (BIOSTEC, 2016).

  • 125.

    Kovaka, S. et al. Transcriptome assembly from long-read RNA-seq alignments with StringTie2. Genome Biol. 20, 278 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 126.

    Wyman, D. et al. A technology-agnostic long-read analysis pipeline for transcriptome discovery and quantification. Preprint at bioRxiv https://doi.org/10.1101/672931 (2020).

  • 127.

    Au, K. F. et al. Characterization of the human ESC transcriptome by hybrid sequencing. Proc. Natl Acad. Sci. USA 110, E4821–E4830 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 128.

    Fu, S. et al. IDP-denovo: de novo transcriptome assembly and isoform annotation by hybrid sequencing. Bioinformatics 34, 2168–2176 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 129.

    de la Rubia, I. et al. Reference-free reconstruction and quantification of transcriptomes from Nanopore long-read sequencing. Preprint at bioRxiv https://doi.org/10.1101/2020.02.08.939942 (2021).

  • 130.

    Workman, R. E. et al. Nanopore native RNA sequencing of a human poly(A) transcriptome. Nat. Methods 16, 1297–1305 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 131.

    Soneson, C. et al. A comprehensive examination of Nanopore native RNA sequencing for characterization of complex transcriptomes. Nat. Commun. 10, 3359 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 132.

    Jain, M. et al. Nanopore sequencing and assembly of a human genome with ultra-long reads. Nat. Biotechnol. 36, 338–345 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 133.

    Jain, M. et al. Linear assembly of a human centromere on the Y chromosome. Nat. Biotechnol. 36, 321–323 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 134.

    Miga, K. H. et al. Telomere-to-telomere assembly of a complete human X chromosome. Nature 585, 79–84 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 135.

    Nurk, S. et al. The complete sequence of a human genome. Preprint at bioRxiv https://doi.org/10.1101/2021.05.26.445798 (2021).

  • 136.

    Tyson, J. R. et al. MinION-based long-read sequencing and assembly extends the Caenorhabditis elegans reference genome. Genome Res. 28, 266–274 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 137.

    Salazar, A. N. et al. Nanopore sequencing enables near-complete de novo assembly of Saccharomyces cerevisiae reference strain CEN.PK113-7D. FEMS Yeast Res. 17, fox074 (2017).

    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 138.

    Michael, T. P. et al. High contiguity Arabidopsis thaliana genome assembly with a single nanopore flow cell. Nat. Commun. 9, 541 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 139.

    Miller, D. E., Staber, C., Zeitlinger, J. & Hawley, R. S. Highly contiguous genome assemblies of 15 Drosophila species generated using nanopore sequencing. G3 8, 3131–3141 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 140.

    Kapustova, V. et al. The dark matter of large cereal genomes: long tandem repeats. Int. J. Mol. Sci. 20, 2483 (2019).

    CAS 
    PubMed Central 
    Article 

    Google Scholar 

  • 141.

    Diaz-Viraque, F. et al. Nanopore sequencing significantly improves genome assembly of the protozoan parasite Trypanosoma cruzi. Genome Biol. Evol. 11, 1952–1957 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 142.

    Datema, E. et al. The megabase-sized fungal genome of Rhizoctonia solani assembled from nanopore reads only. Preprint at bioRxiv https://doi.org/10.1101/084772 (2016).

  • 143.

    Austin, C. M. et al. De novo genome assembly and annotation of Australia’s largest freshwater fish, the Murray cod (Maccullochella peelii), from Illumina and Nanopore sequencing read. Gigascience 6, 1–6 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 144.

    Tan, M. H. et al. Finding Nemo: hybrid assembly with Oxford Nanopore and Illumina reads greatly improves the clownfish (Amphiprion ocellaris) genome assembly. Gigascience 7, 1–6 (2018).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 145.

    Singh, K. S. et al. De novo genome assembly of the Meadow Brown Butterfly, Maniola jurtina. G3 10, 1477–1484 (2020).

  • 146.

    Lind, A. L. et al. Genome of the Komodo dragon reveals adaptations in the cardiovascular and chemosensory systems of monitor lizards. Nat. Ecol. Evol. 3, 1241–1252 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 147.

    Dhar, R. et al. De novo assembly of the Indian blue peacock (Pavo cristatus) genome using Oxford Nanopore technology and Illumina sequencing. Gigascience 8, giz038 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 148.

    Armstrong, E. E. et al. Long live the king: chromosome-level assembly of the lion (Panthera leo) using linked-read, Hi-C, and long-read data. BMC Biol. 18, 3 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 149.

    Kono, N. et al. The bagworm genome reveals a unique fibroin gene that provides high tensile strength. Commun. Biol. 2, 148 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 150.

    Wongsurawat, T. et al. Rapid sequencing of multiple RNA viruses in their native form. Front. Microbiol. 10, 260 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 151.

    Lu, R. et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 395, 565–574 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 152.

    Kim, D. et al. The architecture of SARS-CoV-2 transcriptome. Cell 181, 914–921 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 153.

    Moore, S. C. et al. Amplicon based MinION sequencing of SARS-CoV-2 and metagenomic characterisation of nasopharyngeal swabs from patients with COVID-19. Preprint at medRxiv https://doi.org/10.1101/2020.03.05.20032011 (2020).

  • 154.

    Taiaroa, G. et al. Direct RNA sequencing and early evolution of SARS-CoV-2. Preprint at bioRxiv https://doi.org/10.1101/2020.03.05.976167 (2020).

  • 155.

    Wang, M. et al. Nanopore targeted sequencing for the accurate and comprehensive detection of SARS-CoV-2 and other respiratory viruses. Small 16, e2002169 (2020).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 156.

    Bayega, A. et al. De novo assembly of the olive fruit fly (Bactrocera oleae) genome with linked-reads and long-read technologies minimizes gaps and provides exceptional Y chromosome assembly. BMC Genomics 21, 259 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 157.

    Kadobianskyi, M., Schulze, L., Schuelke, M. & Judkewitz, B. Hybrid genome assembly and annotation of Danionella translucida. Sci. Data 6, 156 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 158.

    Bai, C. M. et al. Chromosomal-level assembly of the blood clam, Scapharca (Anadara) broughtonii, using long sequence reads and Hi-C. Gigascience 8, giz067 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 159.

    Belser, C. et al. Chromosome-scale assemblies of plant genomes using nanopore long reads and optical maps. Nat. Plants 4, 879–887 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 160.

    Marrano, A. et al. High-quality chromosome-scale assembly of the walnut (Juglans regia L.) reference genome. Gigascience 9, giaa050 (2020).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 161.

    Ning, D. L. et al. Chromosomal-level assembly of Juglans sigillata genome using Nanopore, BioNano, and Hi-C analysis. Gigascience 9, giaa006 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 162.

    Kwan, H. H. et al. The genome of the Steller Sea Lion (Eumetopias jubatus). Genes 10, 486 (2019).

    CAS 
    PubMed Central 
    Article 

    Google Scholar 

  • 163.

    Scott, A. D. et al. The giant sequoia genome and proliferation of disease resistance genes. Preprint at bioRxiv https://doi.org/10.1101/2020.03.17.995944 (2020).

  • 164.

    Shafin, K. et al. Nanopore sequencing and the Shasta toolkit enable efficient de novo assembly of eleven human genomes. Nat. Biotechnol. 38, 1044–1053 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 165.

    De Coster, W. et al. Structural variants identified by Oxford Nanopore PromethION sequencing of the human genome. Genome Res. 29, 1178–1187 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 166.

    Singh, M. et al. High-throughput targeted long-read single cell sequencing reveals the clonal and transcriptional landscape of lymphocytes. Nat. Commun. 10, 3120 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 167.

    Roach, N. P. et al. The full-length transcriptome of C. elegans using direct RNA sequencing. Genome Res. 30, 299–312 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 168.

    Parker, M. T. et al. Nanopore direct RNA sequencing maps the complexity of Arabidopsis mRNA processing and m6A modification. eLife 9, e49658 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 169.

    Jiang, F. et al. Long-read direct RNA sequencing by 5′-cap capturing reveals the impact of Piwi on the widespread exonization of transposable elements in locusts. RNA Biol. 16, 950–959 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 170.

    Zhang, J. et al. Comprehensive profiling of circular RNAs with nanopore sequencing and CIRI-long. Nat. Biotechnol. 39, 836–845 (2021).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 171.

    Xin, R. et al. isoCirc catalogs full-length circular RNA isoforms in human transcriptomes. Nat. Commun. 12, 266 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 172.

    Laszlo, A. H. et al. Detection and mapping of 5-methylcytosine and 5-hydroxymethylcytosine with nanopore MspA. Proc. Natl Acad. Sci. USA 110, 18904–18909 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 173.

    Schreiber, J. et al. Error rates for nanopore discrimination among cytosine, methylcytosine, and hydroxymethylcytosine along individual DNA strands. Proc. Natl Acad. Sci. USA 110, 18910–18915 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 174.

    McIntyre, A. B. R. et al. Single-molecule sequencing detection of N6-methyladenine in microbial reference materials. Nat. Commun. 10, 579 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 175.

    Shipony, Z. et al. Long-range single-molecule mapping of chromatin accessibility in eukaryotes. Nat. Methods 17, 319–327 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 176.

    Lee, I. et al. Simultaneous profiling of chromatin accessibility and methylation on human cell lines with nanopore sequencing. Nat. Methods 17, 1191–1199 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 177.

    Georgieva, D., Liu, Q., Wang, K. & Egli, D. Detection of base analogs incorporated during DNA replication by nanopore sequencing. Nucleic Acids Res. 48, e88 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 178.

    Hennion, M. et al. Mapping DNA replication with nanopore sequencing. Preprint at bioRxiv https://doi.org/10.1101/426858 (2018).

  • 179.

    Muller, C. A. et al. Capturing the dynamics of genome replication on individual ultra-long nanopore sequence reads. Nat. Methods 16, 429–436 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 180.

    Ulahannan, N. et al. Nanopore sequencing of DNA concatemers reveals higher-order features of chromatin structure. Preprint at bioRxiv https://doi.org/10.1101/833590 (2019).

  • 181.

    Altemose, N. et al. DiMeLo-seq: a long-read, single-molecule method for mapping protein–DNA interactions genome-wide. Preprint at bioRxiv https://doi.org/10.1101/2021.07.06.451383 (2021).

  • 182.

    Weng, Z. et al. Long-range single-molecule mapping of chromatin modification in eukaryotes. Preprint at bioRxiv https://doi.org/10.1101/2021.07.08.451578 (2021).

  • 183.

    Smith, A. M., Jain, M., Mulroney, L., Garalde, D. R. & Akeson, M. Reading canonical and modified nucleobases in 16S ribosomal RNA using nanopore native RNA sequencing. PLoS ONE 14, e0216709 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 184.

    Aw, J. G. A. et al. Determination of isoform-specific RNA structure with nanopore long reads. Nat. Biotechnol. 39, 336–346 (2020).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 185.

    Stephenson, W. et al. Direct detection of RNA modifications and structure using single molecule nanopore sequencing. Preprint at bioRxiv https://doi.org/10.1101/2020.05.31.126763 (2020).

  • 186.

    Maier, K. C., Gressel, S., Cramer, P. & Schwalb, B. Native molecule sequencing by nano-ID reveals synthesis and stability of RNA isoforms. Genome Res. 30, 1332–1344 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 187.

    Drexler, H. L., Choquet, K. & Churchman, L. S. Splicing kinetics and coordination revealed by direct nascent RNA sequencing through nanopores. Mol. Cell 77, 985–998 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 188.

    Minervini, C. F. et al. TP53 gene mutation analysis in chronic lymphocytic leukemia by nanopore MinION sequencing. Diagn. Pathol. 11, 96 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 189.

    Minervini, C. F. et al. Mutational analysis in BCRABL1 positive leukemia by deep sequencing based on nanopore MinION technology. Exp. Mol. Pathol. 103, 33–37 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 190.

    Orsini, P. et al. Design and MinION testing of a nanopore targeted gene sequencing panel for chronic lymphocytic leukemia. Sci. Rep. 8, 11798 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 191.

    Cumbo, C. et al. Genomic BCRABL1 breakpoint characterization by a multi-strategy approach for “personalized monitoring” of residual disease in chronic myeloid leukemia patients. Oncotarget 9, 10978–10986 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 192.

    Au, C. H. et al. Rapid detection of chromosomal translocation and precise breakpoint characterization in acute myeloid leukemia by nanopore long-read sequencing. Cancer Genet. 239, 22–25 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 193.

    Euskirchen, P. et al. Same-day genomic and epigenomic diagnosis of brain tumors using real-time nanopore sequencing. Acta Neuropathol. 134, 691–703 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 194.

    Pradhan, B. et al. Detection of subclonal L1 transductions in colorectal cancer by long-distance inverse-PCR and Nanopore sequencing. Sci. Rep. 7, 14521 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 195.

    Norris, A. L., Workman, R. E., Fan, Y., Eshleman, J. R. & Timp, W. Nanopore sequencing detects structural variants in cancer. Cancer Biol. Ther. 17, 246–253 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 196.

    Suzuki, A. et al. Sequencing and phasing cancer mutations in lung cancers using a long-read portable sequencer. DNA Res. 24, 585–596 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 197.

    Gabrieli, T. et al. Selective nanopore sequencing of human BRCA1 by Cas9-assisted targeting of chromosome segments (CATCH). Nucleic Acids Res. 46, e87 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 198.

    Jeck, W. R. et al. A nanopore sequencing-based assay for rapid detection of gene fusions. J. Mol. Diagn. 21, 58–69 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 199.

    Moon, J. et al. Rapid diagnosis of bacterial meningitis by nanopore 16S amplicon sequencing: a pilot study. Int. J. Med. Microbiol. 309, 151338 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 200.

    Charalampous, T. et al. Nanopore metagenomics enables rapid clinical diagnosis of bacterial lower respiratory infection. Nat. Biotechnol. 37, 783–792 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 201.

    Cheng, J. et al. Identification of pathogens in culture-negative infective endocarditis cases by metagenomic analysis. Ann. Clin. Microbiol Antimicrob. 17, 43 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 202.

    Gorrie, C. L. et al. Antimicrobial-resistant Klebsiella pneumoniae carriage and infection in specialized geriatric care wards linked to acquisition in the referring hospital. Clin. Infect. Dis. 67, 161–170 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 203.

    Sanderson, N. D. et al. Real-time analysis of nanopore-based metagenomic sequencing from infected orthopaedic devices. BMC Genomics 19, 714 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 204.

    Schmidt, K. et al. Identification of bacterial pathogens and antimicrobial resistance directly from clinical urines by nanopore-based metagenomic sequencing. J. Antimicrob. Chemother. 72, 104–114 (2016).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 205.

    Lu, X. et al. Epidemiologic and genomic insights on mcr-1-harbouring Salmonella from diarrhoeal outpatients in Shanghai, China, 2006–2016. EBioMedicine 42, 133–144 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 206.

    Hu, Y., Fang, L., Nicholson, C. & Wang, K. Implications of error-prone long-read whole-genome shotgun sequencing on characterizing reference microbiomes. iScience 23, 101223 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 207.

    De Roeck, A. et al. NanoSatellite: accurate characterization of expanded tandem repeat length and sequence through whole genome long-read sequencing on PromethION. Genome Biol. 20, 239 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 208.

    Chatron, N. et al. Severe hemophilia A caused by an unbalanced chromosomal rearrangement identified using nanopore sequencing. J. Thromb. Haemost. 17, 1097–1103 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 209.

    Brandler, W. M. et al. Paternally inherited cis-regulatory structural variants are associated with autism. Science 360, 327–331 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 210.

    Carvalho, C. M. B. et al. Interchromosomal template-switching as a novel molecular mechanism for imprinting perturbations associated with Temple syndrome. Genome Med. 11, 25 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 211.

    Miao, H. et al. Long-read sequencing identified a causal structural variant in an exome-negative case and enabled preimplantation genetic diagnosis. Hereditas 155, 32 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 212.

    Dutta, U. R. et al. Breakpoint mapping of a novel de novo translocation t(X;20)(q11.1;p13) by positional cloning and long read sequencing. Genomics 111, 1108–1114 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 213.

    Ishiura, H. et al. Expansions of intronic TTTCA and TTTTA repeats in benign adult familial myoclonic epilepsy. Nat. Genet. 50, 581–590 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 214.

    Zeng, S. et al. Long-read sequencing identified intronic repeat expansions in SAMD12 from Chinese pedigrees affected with familial cortical myoclonic tremor with epilepsy. J. Med. Genet. 56, 265–270 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 215.

    Leija-Salazar, M. et al. Evaluation of the detection of GBA missense mutations and other variants using the Oxford Nanopore MinION. Mol. Genet Genom. Med 7, e564 (2019).

    Article 
    CAS 

    Google Scholar 

  • 216.

    Lang, K. et al. Full-length HLA class I genotyping with the MinION nanopore sequencer. Methods Mol. Biol. 1802, 155–162 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 217.

    Liu, C. et al. Accurate typing of human leukocyte antigen class I genes by Oxford Nanopore sequencing. J. Mol. Diagn. 20, 428–435 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 218.

    Duke, J. L. et al. Resolving MiSeq-generated ambiguities in HLA-DPB1 typing by using the Oxford Nanopore Technology. J. Mol. Diagn. 21, 852–861 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 219.

    Wei, S. & Williams, Z. Rapid short-read sequencing and aneuploidy detection using MinION nanopore technology. Genetics 202, 37–44 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 220.

    Quick, J. et al. Real-time, portable genome sequencing for Ebola surveillance. Nature 530, 228–232 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 221.

    Quick, J. et al. Rapid draft sequencing and real-time nanopore sequencing in a hospital outbreak of Salmonella. Genome Biol. 16, 114 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 222.

    Faria, N. R. et al. Establishment and cryptic transmission of Zika virus in Brazil and the Americas. Nature 546, 406–410 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 223.

    Faria, N. R. et al. Genomic and epidemiological monitoring of yellow fever virus transmission potential. Science 361, 894–899 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 224.

    de Jesus, J. G. et al. Genomic detection of a virus lineage replacement event of dengue virus serotype 2 in Brazil, 2019. Mem. Inst. Oswaldo Cruz 115, e190423 (2020).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 225.

    Russell, J. A. et al. Unbiased strain-typing of arbovirus directly from mosquitoes using nanopore sequencing: a field-forward biosurveillance protocol. Sci. Rep. 8, 5417 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 226.

    Kafetzopoulou, L. E. et al. Metagenomic sequencing at the epicenter of the Nigeria 2018 Lassa fever outbreak. Science 363, 74–77 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 227.

    Brynildsrud, O. B. et al. Acquisition of virulence genes by a carrier strain gave rise to the ongoing epidemics of meningococcal disease in West Africa. Proc. Natl Acad. Sci. USA 115, 5510–5515 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 228.

    Dong, N., Yang, X., Zhang, R., Chan, E. W. & Chen, S. Tracking microevolution events among ST11 carbapenemase-producing hypervirulent Klebsiella pneumoniae outbreak strains. Emerg. Microbes Infect. 7, 146 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 229.

    Rhodes, J. et al. Genomic epidemiology of the UK outbreak of the emerging human fungal pathogen Candida auris. Emerg. Microbes Infect. 7, 43 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 230.

    Hamner, S. et al. Metagenomic profiling of microbial pathogens in the Little Bighorn River, Montana. Int. J. Environ. Res. Public Health 16, 1097 (2019).

    CAS 
    PubMed Central 
    Article 

    Google Scholar 

  • 231.

    Boykin, L. M. et al. Tree Lab: portable genomics for early detection of plant viruses and pests in sub-Saharan Africa. Genes 10, 632 (2019).

    CAS 
    PubMed Central 
    Article 

    Google Scholar 

  • 232.

    Zaaijer, S. et al. Rapid re-identification of human samples using portable DNA sequencing. eLife 6, e27798 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 233.

    Runtuwene, L. R., Tuda, J. S. B., Mongan, A. E. & Suzuki, Y. On-site MinION sequencing. Adv. Exp. Med. Biol. 1129, 143–150 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 234.

    Sutton, M. A. et al. Radiation tolerance of nanopore sequencing technology for life detection on Mars and Europa. Sci. Rep. 9, 5370 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 235.

    Castro-Wallace, S. L. et al. Nanopore DNA sequencing and genome assembly on the International Space Station. Sci. Rep. 7, 18022 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 236.

    Ducluzeau, A., Lekanoff, R. M., Khalsa, N. S., Smith, H. H. & Drown, D. M. Introducing DNA sequencing to the next generation on a research vessel sailing the Bering Sea through a storm. Preprint at Preprints https://doi.org/10.20944/preprints201905.0113.v1 (2019).

  • 237.

    Edwards, A. et al. In-field metagenome and 16S rRNA gene amplicon nanopore sequencing robustly characterize glacier microbiota. Preprint at bioRxiv https://doi.org/10.1101/073965 (2019).

  • 238.

    Blanco, M. B. et al. Next-generation technologies applied to age-old challenges in Madagascar. Conserv. Genet. 21, 785–793 (2020).

    Article 

    Google Scholar 

  • 239.

    Pushkarev, D., Neff, N. F. & Quake, S. R. Single-molecule sequencing of an individual human genome. Nat. Biotechnol. 27, 847–850 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 240.

    Merchant, C. A. et al. DNA translocation through graphene nanopores. Nano Lett. 10, 2915–2921 (2010).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 241.

    Schneider, G. F. et al. DNA translocation through graphene nanopores. Nano Lett. 10, 3163–3167 (2010).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 242.

    Garaj, S. et al. Graphene as a subnanometre trans-electrode membrane. Nature 467, 190–193 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 243.

    Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 244.

    Gershow, M. & Golovchenko, J. A. Recapturing and trapping single molecules with a solid-state nanopore. Nat. Nanotechnol. 2, 775–779 (2007).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 245.

    Seo, J. S. et al. De novo assembly and phasing of a Korean human genome. Nature 538, 243–247 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 246.

    Boza, V., Peresini, P., Brejova, B. & Vinar, T. DeepNano-blitz: a fast base caller for MinION nanopore sequencers. Bioinformatics 36, 4191–4192 (2020).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 247.

    Stoiber, M. & Brown, J. BasecRAWller: streaming nanopore basecalling directly from raw signal. Preprint at bioRxiv https://doi.org/10.1101/133058 (2017).

  • 248.

    Wang, S., Li, Z., Yu, Y. & Gao, X. WaveNano: a signal-level nanopore base-caller via simultaneous prediction of nucleotide labels and move labels through bi-directional WaveNets. Quant. Biol. 6, 359–368 (2018).

    CAS 
    Article 

    Google Scholar 

  • 249.

    Miculinić, N., Ratković, M. & Šikić, M. MinCall-MinION end2end convolutional deep learning basecaller. Preprint at https://arxiv.org/abs/1904.10337 (2019).

  • 250.

    Zhang, Y. et al. Nanopore basecalling from a perspective of instance segmentation. BMC Bioinformatics 21, 136 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 251.

    Lv, X., Chen, Z., Lu, Y. & Yang, Y. An end-to-end Oxford Nanopore basecaller using convolution-augmented transformer. 2020 IEEE Intl. Conf. Bioinformatics and Biomedicine (BIBM) 1, 337–342 (2020).

    Article 

    Google Scholar 

  • 252.

    Huang, N., Nie, F., Ni, P., Luo, F. & Wang, J. SACall: a neural network basecaller for Oxford Nanopore sequencing data based on self-attention mechanism. IEEE/ACM Trans. Comput. Biol. Bioinform. https://doi.org/10.1109/TCBB.2020.3039244 (2020).

  • 253.

    Konishi, H., Yamaguchi, R., Yamaguchi, K., Furukawa, Y. & Imoto, S. Halcyon: an accurate basecaller exploiting an encoder-decoder model with monotonic attention. Bioinformatics 37, 1211–1217 (2021).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 254.

    Xu, Z. et al. Fast-Bonito: a faster basecaller for nanopore sequencing. Preprint at bioRxiv https://doi.org/10.1101/2020.10.08.318535 (2020).

  • 255.

    Fukasawa, Y., Ermini, L., Wang, H., Carty, K. & Cheung, M. S. LongQC: a quality control tool for third generation sequencing long read data. G3 10, 1193–1196 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 256.

    Leger, A. & Leonardi, T. pycoQC, interactive quality control for Oxford Nanopore Sequencing. J. Open Source Softw. 4, 1236 (2019).

  • 257.

    Lanfear, R., Schalamun, M., Kainer, D., Wang, W. & Schwessinger, B. MinIONQC: fast and simple quality control for MinION sequencing data. Bioinformatics 35, 523–525 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 258.

    Yin, Z. et al. RabbitQC: high-speed scalable quality control for sequencing data. Bioinformatics 37, 573–574 (2021).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 259.

    Tardaguila, M. et al. SQANTI: extensive characterization of long-read transcript sequences for quality control in full-length transcriptome identification and quantification. Genome Res. 28, 396–411 (2018).

    CAS 
    PubMed Central 
    Article 

    Google Scholar 

  • 260.

    Ferguson, J. M. & Smith, M. A. SquiggleKit: a toolkit for manipulating nanopore signal data. Bioinformatics 35, 5372–5373 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 261.

    Cheetham, S. W., Kindlova, M. & Ewing, A. D. Methylartist: tools for visualising modified bases from nanopore sequence data. Preprint at bioRxiv https://doi.org/10.1101/2021.07.22.453313 (2021).

  • 262.

    Su, S. et al. NanoMethViz: an R/Bioconductor package for visualizing long-read methylation data. Preprint at bioRxiv https://doi.org/10.1101/2021.01.18.426757 (2021).

  • 263.

    De Coster, W., Stovner, E. B. & Strazisar, M. Methplotlib: analysis of modified nucleotides from nanopore sequencing. Bioinformatics 36, 3236–3238 (2020).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 264.

    Pratanwanich, P. N. et al. Identification of differential RNA modifications from nanopore direct RNA sequencing with xPore. Nat. Biotechnol. https://doi.org/10.1038/s41587-021-00949-w (2021).

  • 265.

    Leger, A. et al. RNA modifications detection by comparative Nanopore direct RNA sequencing. Preprint at bioRxiv https://doi.org/10.1101/843136 (2019).

  • 266.

    Gao, Y. et al. Quantitative profiling of N6-methyladenosine at single-base resolution in stem-differentiating xylem of Populus trichocarpa using Nanopore direct RNA sequencing. Genome Biol. 22, 22 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 267.

    Parker, M. T., Barton, G. J. & Simpson, G. G. Yanocomp: robust prediction of m6A modifications in individual nanopore direct RNA reads. Preprint at bioRxiv https://doi.org/10.1101/2021.06.15.448494 (2021).

  • 268.

    Price, A. M. et al. Direct RNA sequencing reveals m6A modifications on adenovirus RNA are necessary for efficient splicing. Nat. Commun. 11, 6016 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 269.

    Miclotte, G. et al. Jabba: hybrid error correction for long sequencing reads. Algorithms Mol. Biol. 11, 10 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 270.

    Lee, H. et al. Error correction and assembly complexity of single molecule sequencing reads. Preprint at bioRxiv https://doi.org/10.1101/006395 (2014).

  • 271.

    Morisse, P., Lecroq, T. & Lefebvre, A. Hybrid correction of highly noisy long reads using a variable-order de Bruijn graph. Bioinformatics 34, 4213–4222 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 272.

    Madoui, M. A. et al. Genome assembly using Nanopore-guided long and error-free DNA reads. BMC Genomics 16, 327 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 273.

    Holley, G. et al. Ratatosk: hybrid error correction of long reads enables accurate variant calling and assembly. Genome Biol. 22, 28 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 274.

    Koren, S. et al. Hybrid error correction and de novo assembly of single-molecule sequencing reads. Nat. Biotechnol. 30, 693–700 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 275.

    Hackl, T., Hedrich, R., Schultz, J. & Forster, F. proovread: large-scale high-accuracy PacBio correction through iterative short read consensus. Bioinformatics 30, 3004–3011 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 276.

    Firtina, C., Bar-Joseph, Z., Alkan, C. & Cicek, A. E. Hercules: a profile HMM-based hybrid error correction algorithm for long reads. Nucleic Acids Res. 46, e125 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 277.

    Haghshenas, E., Hach, F., Sahinalp, S. C. & Chauve, C. CoLoRMap: correcting long reads by mapping short reads. Bioinformatics 32, i545–i551 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 278.

    Tischler, G. & Myers, E. W. Non hybrid long read consensus using local de Bruijn graph assembly. Preprint at bioRxiv https://doi.org/10.1101/106252 (2017).

  • 279.

    Xiao, C. L. et al. MECAT: fast mapping, error correction, and de novo assembly for single-molecule sequencing reads. Nat. Methods 14, 1072–1074 (2017).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 280.

    Chin, C. S. et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat. Methods 10, 563–569 (2013).

    CAS 
    Article 

    Google Scholar 

  • 281.

    Bao, E., Xie, F., Song, C. & Song, D. FLAS: fast and high-throughput algorithm for PacBio long-read self-correction. Bioinformatics 35, 3953–3960 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 282.

    Nowoshilow, S. et al. The axolotl genome and the evolution of key tissue formation regulators. Nature 554, 50–55 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 283.

    Wang, L., Qu, L., Yang, L., Wang, Y. & Zhu, H. NanoReviser: an error-correction tool for nanopore sequencing based on a deep learning algorithm. Front. Genet. 11, 900 (2020).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 284.

    Broseus, L. et al. TALC: transcript-level aware long-read correction. Bioinformatics 36, 5000–5006 (2020).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 285.

    Sahlin, K. & Medvedev, P. Error correction enables use of Oxford Nanopore technology for reference-free transcriptome analysis. Nat. Commun. 12, 2 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 286.

    Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 287.

    Ren, J. & Chaisson, M. J. P. lra: a long read aligner for sequences and contigs. PLoS Comput. Biol. 17, e1009078 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 288.

    Jain, C., Rhie, A., Hansen, N. F., Koren, S. & Phillippy, A. M. A long read mapping method for highly repetitive reference sequences. Preprint at bioRxiv https://doi.org/10.1101/2020.11.01.363887 (2020).

  • 289.

    Jain, C., Koren, S., Dilthey, A., Phillippy, A. M. & Aluru, S. A fast adaptive algorithm for computing whole-genome homology maps. Bioinformatics 34, i748–i756 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 290.

    Amin, M. R., Skiena, S. & Schatz, M. C. NanoBLASTer: fast alignment and characterization of Oxford Nanopore single molecule sequencing reads. In 2016 IEEE 6th International Conference on Computational Advances in Bio and Medical Sciences 1–6 (ICCABS, 2016).

  • 291.

    Yang, W. & Wang, L. Fast and accurate algorithms for mapping and aligning long reads. J. Comput. Biol. 28, 789–803 (2021).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 292.

    Rautiainen, M. & Marschall, T. GraphAligner: rapid and versatile sequence-to-graph alignment. Genome Biol. 21, 253 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 293.

    Wei, Z. G., Zhang, S. W. & Liu, F. smsMap: mapping single molecule sequencing reads by locating the alignment starting positions. BMC Bioinformatics 21, 341 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 294.

    Haghshenas, E., Sahinalp, S. C. & Hach, F. lordFAST: sensitive and fast alignment search tool for long noisy read sequencing data. Bioinformatics 35, 20–27 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 295.

    Chakraborty, A., Morgenstern, B. & Bandyopadhyay, S. S-conLSH: alignment-free gapped mapping of noisy long reads. BMC Bioinformatics 22, 64 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 296.

    Joshi, D., Mao, S., Kannan, S. & Diggavi, S. QAlign: aligning nanopore reads accurately using current-level modeling. Bioinformatics 37, 625–633 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 297.

    Boratyn, G. M., Thierry-Mieg, J., Thierry-Mieg, D., Busby, B. & Madden, T. L. Magic-BLAST, an accurate RNA-seq aligner for long and short reads. BMC Bioinformatics 20, 405 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 298.

    Hou, L. & Wang, Y. DEEP-LONG: a fast and accurate aligner for long RNA-seq. Preprint at Research Square https://doi.org/10.21203/rs.3.rs-79489/v1 (2020).

  • 299.

    Sahlin, K. & Mäkinen, V. Accurate spliced alignment of long RNA sequencing reads. Bioinformatics https://doi.org/10.1093/bioinformatics/btab540 (2021).

  • 300.

    Chin, C. S. et al. Phased diploid genome assembly with single-molecule real-time sequencing. Nat. Methods 13, 1050–1054 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 301.

    Vaser, R. & Šikić, M. Time- and memory-efficient genome assembly with Raven. Nat. Comput. Sci. 1, 332–336 (2021).

    Article 

    Google Scholar 

  • 302.

    Chin, C. S. & Khalak, A. Human genome assembly in 100 minutes. Preprint at bioRxiv https://doi.org/10.1101/705616 (2019).

  • 303.

    Kamath, G. M., Shomorony, I., Xia, F., Courtade, T. A. & Tse, D. N. HINGE: long-read assembly achieves optimal repeat resolution. Genome Res. 27, 747–756 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 304.

    Jansen, H. J. et al. Rapid de novo assembly of the European eel genome from nanopore sequencing reads. Sci. Rep. 7, 7213 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 305.

    Chen, Y. et al. Efficient assembly of nanopore reads via highly accurate and intact error correction. Nat. Commun. 12, 60 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 306.

    Kolmogorov, M. et al. metaFlye: scalable long-read metagenome assembly using repeat graphs. Nat. Methods 17, 1103–1110 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 307.

    Cheng, H., Concepcion, G. T., Feng, X., Zhang, H. & Li, H. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nat. Methods 18, 170–175 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 308.

    Vaser, R., Sovic, I., Nagarajan, N. & Sikic, M. Fast and accurate de novo genome assembly from long uncorrected reads. Genome Res. 27, 737–746 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 309.

    Huang, N. et al. NeuralPolish: a novel Nanopore polishing method based on alignment matrix construction and orthogonal Bi-GRU Networks. Bioinformatics 11, btab354 (2021).

    Google Scholar 

  • 310.

    Shafin, K. et al. Haplotype-aware variant calling enables high accuracy in nanopore long-reads using deep neural networks. Preprint at bioRxiv https://doi.org/10.1101/2021.03.04.433952 (2021).

  • 311.

    Zimin, A. V. & Salzberg, S. L. The genome polishing tool POLCA makes fast and accurate corrections in genome assemblies. PLoS Comput. Biol. 16, e1007981 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 312.

    Heller, D. & Vingron, M. SVIM: structural variant identification using mapped long reads. Bioinformatics 35, 2907–2915 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 313.

    Cleal, K. & Baird, D. M. Dysgu: efficient structural variant calling using short or long reads. Preprint at bioRxiv https://doi.org/10.1101/2021.05.28.446147 (2021).

  • 314.

    Leung, H. C. et al. SENSV: detecting structural variations with precise breakpoints using low-depth WGS data from a single Oxford Nanopore MinION flowcell. Preprint at bioRxiv https://doi.org/10.1101/2021.04.20.440583 (2021).

  • 315.

    Jiang, T. et al. Long-read-based human genomic structural variation detection with cuteSV. Genome Biol. 21, 189 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 316.

    Feng, Z., Clemente, J. C., Wong, B. & Schadt, E. E. Detecting and phasing minor single-nucleotide variants from long-read sequencing data. Nat. Commun. 12, 3032 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 317.

    Popitsch, N., Preuner, S. & Lion, T. Nanopanel2 calls phased low-frequency variants in Nanopore panel sequencing data. Bioinformatics 16, btab526 (2021).

    Article 

    Google Scholar 

  • 318.

    Luo, R. et al. Exploring the limit of using a deep neural network on pileup data for germline variant calling. Nat. Mach. Intell. 2, 220–227 (2020).

    Article 

    Google Scholar 

  • 319.

    Edge, P., Bafna, V. & Bansal, V. HapCUT2: robust and accurate haplotype assembly for diverse sequencing technologies. Genome Res. 27, 801–812 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 320.

    Shaw, J. & Yu, Y. W. Practical probabilistic and graphical formulations of long-read polyploid haplotype phasing. Preprint at bioRxiv https://doi.org/10.1101/2020.11.06.371799 (2021).

  • 321.

    Klasberg, S., Schmidt, A. H., Lange, V. & Schofl, G. DR2S: an integrated algorithm providing reference-grade haplotype sequences from heterozygous samples. BMC Bioinformatics 22, 236 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 322.

    Zhou, W. et al. Identification and characterization of occult human-specific LINE-1 insertions using long-read sequencing technology. Nucleic Acids Res. 48, 1146–1163 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 323.

    Giesselmann, P. et al. Analysis of short tandem repeat expansions and their methylation state with nanopore sequencing. Nat. Biotechnol. 37, 1478–1481 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 324.

    Marchet, C. et al. De novo clustering of long reads by gene from transcriptomics data. Nucleic Acids Res. 47, e2 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 325.

    Sahlin, K. & Medvedev, P. De novo clustering of long-read transcriptome data using a greedy, quality value-based algorithm. J. Comput. Biol. 27, 472–484 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 326.

    Tian, L. et al. Comprehensive characterization of single cell full-length isoforms in human and mouse with long-read sequencing. Preprint at bioRxiv https://doi.org/10.1101/2020.08.10.243543 (2020).

  • 327.

    Hu, Y. et al. LIQA: long-read isoform quantification and analysis. Genome Biol. 22, 182 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 328.

    Rautiainen, M. et al. AERON: transcript quantification and gene-fusion detection using long reads. Preprint at bioRxiv https://doi.org/10.1101/2020.01.27.921338 (2020).

  • 329.

    Weirather, J. L. et al. Characterization of fusion genes and the significantly expressed fusion isoforms in breast cancer by hybrid sequencing. Nucleic Acids Res. 43, e116 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 330.

    Davidson, N. M. et al. JAFFAL: detecting fusion genes with long read transcriptome sequencing. Preprint at bioRxiv https://doi.org/10.1101/2021.04.26.441398 (2021).

  • 331.

    Liu, Q. et al. LongGF: computational algorithm and software tool for fast and accurate detection of gene fusions by long-read transcriptome sequencing. BMC Genomics 21, 793 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 332.

    Deonovic, B., Wang, Y., Weirather, J., Wang, X. J. & Au, K. F. IDP-ASE: haplotyping and quantifying allele-specific expression at the gene and gene isoform level by hybrid sequencing. Nucleic Acids Res. 45, e32 (2017).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 333.

    Glinos, D. A. et al. Transcriptome variation in human tissues revealed by long-read sequencing. Preprint at bioRxiv https://doi.org/10.1101/2021.01.22.427687 (2021).

  • 334.

    Calus, S. T., Ijaz, U. Z. & Pinto, A. J. NanoAmpli-Seq: a workflow for amplicon sequencing for mixed microbial communities on the nanopore sequencing platform. Gigascience 7, giy140 (2018).

    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 335.

    Karst, S. M. et al. High-accuracy long-read amplicon sequences using unique molecular identifiers with Nanopore or PacBio sequencing. Nat. Methods 18, 165–169 (2021).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 336.

    Gilpatrick, T. et al. Targeted nanopore sequencing with Cas9-guided adapter ligation. Nat. Biotechnol. 38, 433–438 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 337.

    Cheetham, S. W. et al. Single-molecule simultaneous profiling of DNA methylation and DNA–protein interactions with Nanopore-DamID. Preprint at bioRxiv https://doi.org/10.1101/2021.08.09.455753 (2021).

  • 338.

    Hennion, M. et al. FORK-seq: replication landscape of the Saccharomyces cerevisiae genome by nanopore sequencing. Genome Biol. 21, 125 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 339.

    Philpott, M. et al. Nanopore sequencing of single-cell transcriptomes with scCOLOR-seq. Nat. Biotechnol. https://doi.org/10.1038/s41587-021-00965-w (2021).

  • 340.

    Gupta, I. et al. Single-cell isoform RNA sequencing characterizes isoforms in thousands of cerebellar cells. Nat. Biotechnol. 36, 1197–1202 (2018).

  • 341.

    Lebrigand, K., Magnone, V., Barbry, P. & Waldmann, R. High throughput error corrected Nanopore single cell transcriptome sequencing. Nat. Commun. 11, 4025 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 342.

    Bizuayehu, T. T., Labun, K., Jefimov, K. & Valen, E. Single molecule structure sequencing reveals RNA structural dependencies, breathing and ensembles. Preprint at bioRxiv https://doi.org/10.1101/2020.05.18.101402 (2020).

  • 343.

    Drexler, H. L. et al. Revealing nascent RNA processing dynamics with nano-COP. Nat. Protoc. 16, 1343–1375 (2021).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • Source link