Preloader

Sitosterol and glucosylceramide cooperative transversal and lateral uneven distribution in plant membranes

  • 1.

    Jarsch, I. K. et al. Plasma membranes are Subcompartmentalized into a plethora of coexisting and diverse microdomains in Arabidopsis and Nicotiana benthamiana. Plant Cell 26 (2014).

  • 2.

    Beck, J. G., Mathieu, D., Loudet, C., Buchoux, S. & Dufourc, E. J. Plant sterols in “rafts”: A better way to regulate membrane thermal shocks. FASEB J. 21 (2007).

  • 3.

    Xu, X. et al. Effect of the structure of natural sterols and sphingolipids on the formation of ordered sphingolipid/sterol domains (rafts). J. Biol. Chem. 276 (2001).

  • 4.

    Mamode Cassim, A. et al. Plant lipids: KEY players of plasma membrane organization and function. Prog. Lipid Res. 73 (2019).

  • 5.

    Karnovsky, M. J., Kleinfeld, A. M., Hoover, R. L. & Klausner, R. D. The concept of lipid domains in membranes. J. Cell Biol. 94 (1982).

  • 6.

    Bhat, R. A., Miklis, M., Schmelzer, E., Schulze-Lefert, P. & Panstruga, R. Recruitment and interaction dynamics of plant penetration resistance components in a plasma membrane microdomain. Proc. Natl. Acad. Sci. USA. 102 (2005).

  • 7.

    Cacas, J.-L. et al. Lipids of plant membrane rafts. Prog. Lipid Res. 51, 272–299 (2012).

    CAS 
    Article 

    Google Scholar 

  • 8.

    Borner, G. H. H. et al. Analysis of detergent-resistant membranes in arabidopsis. Evidence for plasma membrane lipid rafts. Plant Physiol. 137 (2005).

  • 9.

    Titapiwatanakun, B. et al. ABCB19/PGP19 stabilises PIN1 in membrane microdomains in Arabidopsis. Plant J. 57, (2009).

  • 10.

    Simon-Plas, F., Perraki, A., Bayer, E., Gerbeau-Pissot, P. & Mongrand, S. An update on plant membrane rafts. Curr. Opin. Plant Biol. 14, 642–649 (2011).

    CAS 
    Article 

    Google Scholar 

  • 11.

    Guillier, C. et al. Direct purification of detergent-insoluble membranes from Medicago truncatula root microsomes: Comparison between floatation and sedimentation. BMC Plant Biol. 14 (2014).

  • 12.

    Yoshida, S. & Uemura, M. Protein and lipid compositions of isolated plasma membranes from orchard grass (Dactylis glomerata L.) and changes during cold acclimation. Plant Physiol. 75 (1984).

  • 13.

    Hartmann, M. A. Plant sterols and the membrane environment. Trends Plant Sci. 3 (1998).

  • 14.

    Schuler, I. et al. Differential effects of plant sterols on water permeability and on acyl chain ordering of soybean phosphatidylcholine bilayers. Proc. Natl. Acad. Sci. USA. 88 (1991).

  • 15.

    Krajewski-Bertrand, M. A., Milon, A. & Hartmann, M. A. Deuterium-NMR investigation of plant sterol effects on soybean phosphatidylcholine acyl chain ordering. Chem. Phys. Lipids 63 (1992).

  • 16.

    Mora, M. P. et al. Optimisation of plant sterols incorporation in human keratinocyte plasma membrane and modulation of membrane fluidity. Chem. Phys. Lipids 101 (1999).

  • 17.

    Markham, J. E., Lynch, D. V., Napier, J. A., Dunn, T. M. & Cahoon, E. B. Plant sphingolipids: Function follows form. Curr. Opin. Plant Biol. 16 (2013).

  • 18.

    Msanne, J. et al. Glucosylceramides are critical for cell-type differentiation and organogenesis, but not for cell viability in Arabidopsis. Plant J. 84, (2015).

  • 19.

    Emami, S. et al. Molecular dynamics simulations of ternary lipid bilayers containing plant sterol and glucosylceramide. Chem. Phys. Lipids 203, 24–32 (2017).

    CAS 
    Article 

    Google Scholar 

  • 20.

    Gronnier, J., Gerbeau-Pissot, P., Germain, V., Mongrand, S. & Simon-Plas, F. Divide and rule: Plant plasma membrane organization. Trends Plant Sci. 23, 899–917 (2018).

    CAS 
    Article 

    Google Scholar 

  • 21.

    Cacas, J.-L. et al. Revisiting plant plasma membrane lipids in tobacco: A focus on sphingolipids. Plant Physiol. 170, 367–384 (2016).

    CAS 
    Article 

    Google Scholar 

  • 22.

    Colin, L. A. & Jaillais, Y. Phospholipids across scales: lipid patterns and plant development. Curr. Opin. Plant Biol. 53 (2020).

  • 23.

    Tjellstrom, H., Hellgren, L. I., Wieslander, A. & Sandelius, A. S. Lipid asymmetry in plant plasma membranes: phosphate deficiency-induced phospholipid replacement is restricted to the cytosolic leaflet. FASEB J. https://doi.org/10.1096/fj.09-139410 (2010).

    Article 
    PubMed 

    Google Scholar 

  • 24.

    Grison, M. S. et al. Specific membrane lipid composition is important for plasmodesmata function in arabidopsis. Plant Cell 27, 1228–1250 (2015).

    CAS 
    Article 

    Google Scholar 

  • 25.

    Ünnep, R. et al. The ultrastructure and flexibility of thylakoid membranes in leaves and isolated chloroplasts as revealed by small-angle neutron scattering. Biochim. Biophys. Acta Bioenerg. 1837 (2014).

  • 26.

    Hodzic, A., Rappolt, M., Amenitsch, H., Laggner, P. & Pabst, G. Differential modulation of membrane structure and fluctuations by plant sterols and cholesterol. Biophys. J. 94 (2008).

  • 27.

    Marsan, M. P., Bellet-Amalric, E., Muller, I., Zaccai, G. & Milon, A. Plant sterols: A neutron diffraction study of sitosterol and stigmasterol in soybean phosphatidylcholine membranes. Biophys. Chem. 75 (1998).

  • 28.

    Liberton, M. et al. Organization and flexibility of cyanobacterial thylakoid membranes examined by neutron scattering. J. Biol. Chem. 288 (2013).

  • 29.

    Nagy, G. et al. Kinetics of structural reorganizations in multilamellar photosynthetic membranes monitored by small-angle neutron scattering. Eur. Phys. J. E 36 (2013).

  • 30.

    Oftedal, L. et al. The lipopeptide toxins anabaenolysin A and B target biological membranes in a cholesterol-dependent manner. Biochim. Biophys. Acta 1818, 3000–3009 (2012).

    CAS 
    Article 

    Google Scholar 

  • 31.

    Mannella, C. A. Structure of the outer mitochondrial membrane analysis of x-ray diffraction from the plant membrane. BBA Biomembr. 645 (1981).

  • 32.

    Jaillais, Y. & Ott, T. The nanoscale organization of the plasma membrane and its importance in signaling: A proteolipid perspective. Plant Physiol. 182 (2020).

  • 33.

    Maget-Dana, R. The monolayer technique: A potent tool for studying the interfacial properties of antimicrobial and membrane-lytic peptides and their interactions with lipid membranes. Biochim. Biophys. Acta Biomembr. 1462, 109–140 (1999).

    CAS 
    Article 

    Google Scholar 

  • 34.

    Fang, K., Zou, G., He, P., Sheng, X. & Lu, C. Thermodynamic characterization of mixed monolayers of phosphatidylcholine and arachidic acid on different subphases. Colloids Surf. A Physicochem. Eng. Asp. 224, 53–63 (2003).

    CAS 
    Article 

    Google Scholar 

  • 35.

    Marsh, D. Lateral pressure in membranes. Biochim. Biophys. Acta 1286, 183–223 (1996).

    CAS 
    Article 

    Google Scholar 

  • 36.

    Gaines, G. L. Insoluble Monolayers at Liquid-Gas Interfaces. (Interscience Publishers, 1966).

  • 37.

    Eeman, M., Deleu, M., Paquot, M., Thonart, P. & Dufrêne, Y. F. Nanoscale properties of mixed fengycin/ceramide monolayers explored using atomic force microscopy. Langmuir 21, 2505–2511 (2005).

    CAS 
    Article 

    Google Scholar 

  • 38.

    Daly, T. A., Wang, M. & Regen, S. L. The origin of cholesterol’s condensing effect. Langmuir 27 (2011).

  • 39.

    Krause, M. R. & Regen, S. L. The structural role of cholesterol in cell membranes: From condensed bilayers to lipid rafts. Acc. Chem. Res. 47 (2014).

  • 40.

    Varela, A. R. P. et al. Glucosylceramide reorganizes cholesterol-containing domains in a fluid phospholipid membrane. Biophys. J. 110, 612–622 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 41.

    Koutsioubas, A. Model-independent recovery of interfacial structure from multi-contrast neutron reflectivity data. J. Appl. Crystallogr. 52 (2019).

  • 42.

    Nelson, A. Co-refinement of multiple-contrast neutron/X-ray reflectivity data using MOTOFIT. J. Appl. Crystallogr. 39 (2006).

  • 43.

    https://sourceforge.net/projects/motofit/.

  • 44.

    Rondelli, V. et al. Building a biomimetic membrane for neutron reflectivity investigation: Complexity, asymmetry and contrast. Biophys. Chem. 229 (2017).

  • 45.

    Rondelli, V. et al. Ganglioside GM1 forces the redistribution of cholesterol in a biomimetic membrane. Biochim. Biophys. Acta Biomembr. 1818 (2012).

  • 46.

    Wacklin, H. P. & Thomas, R. K. Spontaneous formation of asymmetric lipid bilayers by adsorption of vesicles. Langmuir 23, 7644–7651 (2007).

    CAS 
    Article 

    Google Scholar 

  • 47.

    Wacklin, H. P. Composition and asymmetry in supported membranes formed by vesicle fusion. Langmuir 27, 7698–7707 (2011).

    CAS 
    Article 

    Google Scholar 

  • 48.

    Rondelli, V. et al. Neutrons for rafts, rafts for neutrons. Eur. Phys. J. E. Soft Matter 36 (2013).

  • 49.

    Léonard, A. et al. Location of cholesterol in DMPC membranes. A comparative study by neutron diffraction and molecular mechanics simulation. Langmuir 17 (2001).

  • 50.

    Klauda, J. B. et al. Update of the CHARMM all-atom additive force field for lipids: Validation on six lipid types. J. Phys. Chem. B 114, 7830–7843 (2010).

    CAS 
    Article 

    Google Scholar 

  • 51.

    Jo, S., Lim, J. B., Klauda, J. B. & Im, W. CHARMM-GUI membrane builder for mixed bilayers and its application to yeast membranes. Biophys. J. 97, 50–58 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 52.

    Jo, S., Kim, T., Iyer, V. G. & Im, W. CHARMM-GUI: A web-based graphical user interface for CHARMM. J. Comput. Chem. 29 (2008).

  • 53.

    Jo, S., Kim, T. & Im, W. Automated builder and database of protein/membrane complexes for molecular dynamics simulations. PLoS ONE 2, e880 (2007).

  • 54.

    Wu, E. L. et al. CHARMM-GUI membrane builder toward realistic biological membrane simulations. J. Comput. Chem. 35 (2014).

  • 55.

    Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & Klein, M. L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79 (1983).

  • 56.

    Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., DiNola, A. & Haak, J. R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684–3690 (1984).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 57.

    Nosé, S. A molecular dynamics method for simulations in the canonical ensemble. Mol. Phys. 52, 255–268 (1984).

    ADS 
    Article 

    Google Scholar 

  • 58.

    Hoover, W. G. Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A 31, 1695–1697 (1985).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 59.

    Parrinello, M. & Rahman, A. Polymorphic transitions in single crystals: A new molecular dynamics method. J. Appl. Phys. 52, 7182–7190 (1981).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 60.

    Essmann, U. et al. A smooth particle mesh Ewald method. J. Chem. Phys. 103, 8577 (1995).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 61.

    Steinbach, P. J. & Brooks, B. R. New spherical-cutoff methods for long-range forces in macromolecular simulation. J. Comput. Chem. 15, 667–683 (1994).

    CAS 
    Article 

    Google Scholar 

  • 62.

    Hess, B., Bekker, H., Berendsen, H. J. C. & Fraaije, J. G. E. M. LINCS: A linear constraint solver for molecular simulations. J. Comput. Chem. 18, 1463–1472 (1997).

    CAS 
    Article 

    Google Scholar 

  • 63.

    Abraham, M. J. et al. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2, 19–25 (2015).

    ADS 
    Article 

    Google Scholar 

  • 64.

    Humphrey, W., Dalke, A. & Schulten, K. V. M. D. Visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996).

    CAS 
    Article 

    Google Scholar 

  • 65.

    Deleu, M., Crowet, J. M., Nasir, M. N. & Lins, L. Complementary biophysical tools to investigate lipid specificity in the interaction between bioactive molecules and the plasma membrane: A review. Biochim. Biophys. Acta Biomembr. https://doi.org/10.1016/j.bbamem.2014.08.023 (2014).

    Article 

    Google Scholar 

  • 66.

    Brasseur, R., Killian, J. A., De Kruijff, B. & Ruysschaert, J. M. Conformational analysis of gramicidin-gramicidin interactions at the air/water interface suggests that gramicidin aggregates into tube-like structures similar as found in the gramicidin-induced hexagonal HII phase. Biochim. Biophys. Acta 903, 11–17 (1987).

    CAS 
    Article 

    Google Scholar 

  • 67.

    Claereboudt, E. J. S., Eeckhaut, I., Lins, L. & Deleu, M. How different sterols contribute to saponin tolerant plasma membranes in sea cucumbers. Sci. Rep. 8 (2018).

  • 68.

    Franche, A. et al. Amphiphilic azobenzenes: Antibacterial activities and biophysical investigation of their interaction with bacterial membrane lipids. Bioorg. Chem. 94, 103399 (2020).

  • 69.

    Lins, L. & Brasseur, R. The hydrophobic effect in protein folding. FASEB J. 9, 535–540 (1995).

    CAS 
    Article 

    Google Scholar 

  • 70.

    Mattauch, S. et al. The high-intensity reflectometer of the jülich centre for neutron science: MARIA. J. Appl. Crystallogr. 51, (2018).

  • 71.

    Koutsioubas, A. Combined coarse-grained molecular dynamics and neutron reflectivity characterization of supported lipid membranes. J. Phys. Chem. B 120 (2016).

  • 72.

    Rondelli, V. et al. Mucin thin layers: A model for mucus-covered tissues. Int. J. Mol. Sci. 20 (2019).

  • 73.

    Rondelli, V. et al. Amyloidβ Peptides in interaction with raft-mime model membranes: A neutron reflectivity insight. Sci. Rep. 6 (2016).

  • 74.

    Micciulla, S., Gerelli, Y., Campbell, R. A. & Schneck, E. A versatile method for the distance-dependent structural characterization of interacting soft interfaces by neutron reflectometry. Langmuir 34 (2018).

  • 75.

    Darré, L., Iglesias-Fernandez, J., Kohlmeyer, A., Wacklin, H. & Domene, C. Molecular dynamics simulations and neutron reflectivity as an effective approach to characterize biological membranes and related macromolecular assemblies. J. Chem. Theory Comput. 11 (2015).

  • Source link