Preloader

Human neural tube morphogenesis in vitro by geometric constraints

  • 1.

    Wallingford, J. B., Niswander, L. A., Shaw, G. M. & Finnell, R. H. The continuing challenge of understanding, preventing, and treating neural tube defects. Science 339, 1222002 (2013).

    Article 

    Google Scholar 

  • 2.

    Lee, S. & Gleeson, J. G. Closing in on mechanisms of open neural tube defects. Trends Neurosci. 43, 519–532 (2020).

    CAS 
    Article 

    Google Scholar 

  • 3.

    Kim, J., Koo, B.-K. & Knoblich, J. A. Human organoids: model systems for human biology and medicine. Nat. Rev. Mol. Cell Biol. 21, 571–584 (2020).

    CAS 
    Article 

    Google Scholar 

  • 4.

    Quadrato, G. & Arlotta, P. Present and future of modeling human brain development in 3D organoids. Curr. Opin. Cell Biol. 49, 47–52 (2017).

    CAS 
    Article 

    Google Scholar 

  • 5.

    Haremaki, T. et al. Self-organizing neuruloids model developmental aspects of Huntington’s disease in the ectodermal compartment. Nat. Biotechnol. 37, 1198–1208 (2019).

    CAS 
    Article 

    Google Scholar 

  • 6.

    Britton, G., Heemskerk, I., Hodge, R., Qutub, A. A. & Warmflash, A. A novel self-organizing embryonic stem cell system reveals signaling logic underlying the patterning of human ectoderm. Development 146, dev179093 (2019).

    CAS 
    Article 

    Google Scholar 

  • 7.

    Ybot-Gonzalez, P., Cogram, P., Gerrelli, D. & Copp, A. J. Sonic hedgehog and the molecular regulation of mouse neural tube closure. Development 129, 2507–2517 (2002).

    CAS 
    Article 

    Google Scholar 

  • 8.

    Nikolopoulou, E., Galea, G. L., Rolo, A., Greene, N. D. E. & Copp, A. J. Neural tube closure: cellular, molecular and biomechanical mechanisms. Development 144, 552–566 (2017).

    CAS 
    Article 

    Google Scholar 

  • 9.

    Nikolaev, M. et al. Homeostatic mini-intestines through scaffold-guided organoid morphogenesis. Nature 585, 574–578 (2020).

    ADS 
    Article 

    Google Scholar 

  • 10.

    Xue, X. et al. Mechanics-guided embryonic patterning of neuroectoderm tissue from human pluripotent stem cells. Nat. Mater. 17, 633–641 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 11.

    Zheng, Y. et al. Dorsal-ventral patterned neural cyst from human pluripotent stem cells in a neurogenic niche. Sci. Adv. 5, eaax5933 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 12.

    Sahni, G. et al. A micropatterned human‐specific neuroepithelial tissue for modeling gene and drug‐induced neurodevelopmental defects. Adv. Sci. 8, 2001100 (2021).

    CAS 
    Article 

    Google Scholar 

  • 13.

    Developmental Stages in Human Embryos (eds O’Rahilly, R. & Müller, F.) (Carnegie Institute of Washington, 1987).

  • 14.

    Ray, H. J. & Niswander, L. A. Dynamic behaviors of the non-neural ectoderm during mammalian cranial neural tube closure. Dev. Biol. 416, 279–285 (2016).

    CAS 
    Article 

    Google Scholar 

  • 15.

    Rolo, A. et al. Regulation of cell protrusions by small GTPases during fusion of the neural folds. eLife 5, e13273 (2016).

    Article 

    Google Scholar 

  • 16.

    Martins-Green, M. Origin of the dorsal surface of the neural tube by progressive delamination of epidermal ectoderm and neuroepithelium: implications for neurulation and neural tube defects. Development 103, 687–706 (1988).

    CAS 
    Article 

    Google Scholar 

  • 17.

    Molè, M. A. et al. Integrin-mediated focal anchorage drives epithelial zippering during mouse neural tube closure. Dev. Cell 52, 321–334.e6 (2020).

    Article 

    Google Scholar 

  • 18.

    Ji, Y. et al. Single cell transcriptomics and developmental trajectories of murine cranial neural crest cell fate determination and cell cycle progression. Preprint at https://doi.org/10.1101/2021.05.10.443503 (2021).

  • 19.

    Vega, F. M., Fruhwirth, G., Ng, T. & Ridley, A. J. RhoA and RhoC have distinct roles in migration and invasion by acting through different targets. J. Cell Biol. 193, 655–665 (2011).

    CAS 
    Article 

    Google Scholar 

  • 20.

    Baldassarre, M. et al. Filamins regulate cell spreading and initiation of cell migration. PLoS ONE 4, e7830 (2009).

    ADS 
    Article 

    Google Scholar 

  • 21.

    Grande-García, A. et al. Caveolin-1 regulates cell polarization and directional migration through Src kinase and Rho GTPases. J. Cell Biol. 177, 683–694 (2007).

    Article 

    Google Scholar 

  • 22.

    de Almeida, P. G., Pinheiro, G. G., Nunes, A. M., Gonçalves, A. B. & Thorsteinsdóttir, S. Fibronectin assembly during early embryo development: A versatile communication system between cells and tissues. Dev. Dyn. 245, 520–535 (2016).

    Article 

    Google Scholar 

  • 23.

    Haigo, S. L., Hildebrand, J. D., Harland, R. M. & Wallingford, J. B. Shroom induces apical constriction and is required for hingepoint formation during neural tube closure. Curr. Biol. 13, 2125–2137 (2003).

    CAS 
    Article 

    Google Scholar 

  • 24.

    Chen, Z., Kuang, L., Finnell, R. H. & Wang, H. Genetic and functional analysis of SHROOM1–4 in a Chinese neural tube defect cohort. Hum. Genet. 137, 195–202 (2018).

    CAS 
    Article 

    Google Scholar 

  • 25.

    Butler, M. B. et al. Rho kinase-dependent apical constriction counteracts M-phase apical expansion to enable mouse neural tube closure. J. Cell Sci. 132, jcs230300 (2019).

    CAS 
    Article 

    Google Scholar 

  • 26.

    Schoenwolf, G. C. & Smith, J. L. Mechanisms of neurulation: traditional viewpoint and recent advances. Development 109, 243–270 (1990).

    CAS 
    Article 

    Google Scholar 

  • 27.

    Hernandez, I. et al. A farnesyltransferase inhibitor activates lysosomes and reduces tau pathology in mice with tauopathy. Sci. Transl. Med. 11, eaat3005 (2019).

  • 28.

    Karzbrun, E., Khankhel, A. & Streichan, S. J. Recapitulating neural tube morphogenesis with human pluripotent stem cells. Protoc. Exch. https://doi.org/10.21203/rs.3.pex-1606/v1 (2021).

  • 29.

    Li, L. et al. Ectodermal progenitors derived from epiblast stem cells by inhibition of Nodal signaling. J. Mol. Cell. Biol. 7, 455–465 (2015).

    Article 

    Google Scholar 

  • 30.

    Wilson, P. A., Lagna, G., Suzuki, A. & Hemmati-Brivanlou, A. Concentration-dependent patterning of the Xenopus ectoderm by BMP4 and its signal transducer Smad1. Development 124, 3177–3184 (1997).

    CAS 
    Article 

    Google Scholar 

  • 31.

    Boel, N. M.-E., Hunter, M. C. & Edkins, A. L. LRP1 is required for novobiocin-mediated fibronectin turnover. Sci. Rep. 8, 11438 (2018).

    ADS 
    Article 

    Google Scholar 

  • 32.

    Robert, E. & Guibaud, P. Maternal valproic acid and congenital neural tube defects. Lancet 320, 937 (1982).

    Article 

    Google Scholar 

  • 33.

    Hughes, A., Greene, N. D. E., Copp, A. J. & Galea, G. L. Valproic acid disrupts the biomechanics of late spinal neural tube closure in mouse embryos. Mech. Dev. 149, 20–26 (2018).

    CAS 
    Article 

    Google Scholar 

  • 34.

    Hamburger, V. & Hamilton, H. L. A series of normal stages in the development of the chick embryo. Dev. Dyn. 195, 231–272 (1992).

    CAS 
    Article 

    Google Scholar 

  • 35.

    Theiler, K. The House Mouse: Atlas of Embryonic Development (Springer Science & Business Media, 1989).

  • 36.

    Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36, 411–420 (2018).

    CAS 
    Article 

    Google Scholar 

  • 37.

    Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902.e21 (2019).

    CAS 
    Article 

    Google Scholar 

  • 38.

    McGinnis, C. S., Murrow, L. M. & Gartner, Z. J. DoubletFinder: doublet detection in single-cell RNA sequencing data using artificial nearest neighbors. Cell Syst. 8, 329–337.e4 (2019).

    CAS 
    Article 

    Google Scholar 

  • 39.

    Hafemeister, C. & Satija, R. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. Genome Biol. 20, 296 (2019).

    CAS 
    Article 

    Google Scholar 

  • 40.

    Zhou, Y. et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 10, 1523 (2019).

    ADS 
    Article 

    Google Scholar 

  • 41.

    Tirosh, I. et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science 352, 189–196 (2016)

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Source link